
1

Objects, UML,
and Java
Slides originally by Abram Hindle & Ken Wong

Hazel Campbell
Department of Computing Science
University of Alberta

2

2

Slides originally by Ken Wong

Images reproduced in these slides have been included under section 29 of the
Copyright Act, as fair dealing for research, private study, criticism, or review. Further
distribution or uses may infringe copyright.

3

Modeling Principles

3

4

data

Language Evolution
COBOL, Fortran:

subprograms (subroutines)
access global data

break up system
into subroutines

4

subprograms

5

Language Evolution
Algol, Pascal:

(nested) procedures
with block structured
scope

break up system
into nested
procedures 5

nested procedures

data

6

Language Evolution
Modula-2, C:

modules (files)
of related data
and functions

break up system
into modules
(e.g., abstract
data types) 6

modules

data data

7

Language Evolution
Smalltalk, C++, Java:

classes with
data and
methods
classes as
“factories” for
objects

break up system
into classes 7

data data

classes

9

Abstraction
Simplifying to its essentials the description of
a real-world entity or concept

coping with complexity

“selective ignorance”

modeling the problem space

e.g., a “Person” abstraction 9

10

Encapsulation
Bundling data with access functions

distinguishing “what” from “how”

“need to know” restricted access

maintaining integrity

information hiding criterion
– hide changeable internal details from the outside

world, but reveal assumptions through interface

e.g., a “Person” abstract data type
10

11

Decomposition
Dividing whole things into parts

or composing whole things out of parts

“separation of concerns”

data parts
– fixed or dynamic number
– sharing of parts
– life time of parts

11

12

Generalization
From specific cases, looking for
commonalities that can be factored
out

reusing common designs
reducing redundant code

making systems flexible and
extensible

12

13

Object-Oriented
Models

● Click to add Text

13

14

Object-Oriented Models
Implementing OO models:

OO programming languages
– e.g., Java, C++

Expressing OO models:

OO design notations
– e.g., UML

14

15

Java
Principal designer:

James Gosling, Sun Microsystems

Language goals:

simple, object-oriented

robust, secure

network and thread support

“compile once, run anywhere”
15

16

Java
Language design inspired by …

16

Lisp garbage collection, reflection
Simula-67, C++ classes
Algol-68 overloading
Pascal, Modula-2 strong type checking
C syntax
Ada exceptions
Objective C, Eiffel interfaces
Modula-3 threads

17

Unified Modeling Language (UML)
Principal inventors:

Grady Booch, Ivar Jacobson, James Rumbaugh

Purpose:
express object-oriented designs visually
programming language independent
communicate, evaluate, and reuse designs
make design intent more explicit

can think about design, before coding 17

18

Abstraction
Object:

an entity with specific attribute values (state),
behavior, and identity

typically instantiated from a class

Class:

associated type of an object

defines attributes and methods 18

19

Java and UML Class
public class Frame { // version 0
 // represent a ‘window’
 /* body of class definition goes here */
}

19

Frame Frame

UML class notation

20

Encapsulation
Class:

access control for attributes and methods
– e.g., public or private

access is not the same as visibility

“design by contract”
– public interface represents a contract between the

developer who implements the class and the developer
who uses the class 20

21

Java Class
public class Frame { // version 1
 // private implementation

 private datatype variablename;

 // public interface

 public Frame(arguments) {
 // implementation of constructor
 }

 public returntype methodname(arguments) {
 // implementation of method
 }
}

21

22

Java Class
public class Frame { // version 2
 private int x;
 private int y;
 …
 public Frame (String name,
 int x, int y, int height, int width) { … }

 public void resize(
 int newHeight, int newWidth) { … }

 public void moveTo(
 int newX, int newY) { … }

 public void drawText(String text,
 int x, int y) { … }
}

22

23

UML Class

23

-x : Integer
-y : Integer

+Frame(name: String, x: Integer, y: Integer, height: Integer, width: Integer)
+resize(height: Integer, width: Integer)
+moveTo(x: Integer, y: Integer)
+drawText(text: String, x: Integer, y: Integer)

Frame

– private
+ public

24

Decomposition
Association relationship:

“some” relationship between classes
– e.g., between Book and Patron

24

25

UML Association

Read class diagram using “objects”

a Food object goes well with a Wine object

a Food object is associated with
0 or more Wine objects

a Wine object is associated with
0 or more Food objects 25

WineFood 0..* 0..*

goes well with

26

Decomposition
Aggregation relationship:

weak “has-a” relationship

whole “has-a” part

a part may belong to (be shared with)
other wholes

e.g., a Section and a Student 26

27

Java and UML Aggregation
Dynamic number of aggregated objects:

public class Section {
 private ArrayList<Student> roster;
 …

 public Section() {
 roster = new ArrayList<Student>();
 …
 }
 public void add(Student s) { … }
}

27

Section Student0..*0..*

28

Java and UML Aggregation
Fixed number of aggregated objects:

public class Frame {

 private Location myLocation; // shared object
 private Size mySize; // shared object
 …
}

28

FrameLocation 0..* Size1 10..*

29

Decomposition
Composition relationship:

strong “has-a” relationship
exclusive containment of parts

related object life times
– the whole cannot exist without having the

parts; if the whole is destroyed, the parts
should also be destroyed

often access the parts through the whole 29

30

UML Composition
Contained objects are exclusive to the container

a Circle object has a Point object that is
exclusive to it (however, other objects may
contain Point objects, just not this one)

30

Circle Point1

31

ClassBClassA

ClassBClassA

ClassBClassA

association

aggregation

composition

whole

whole

part

part

32

ClassBClassA

ClassBClassA

ClassBClassA

association

aggregation
ClassA and ClassB can created/destroyed independently

composition
If ClassA instance is deleted, all of its ClassB instances get deleted too

whole

whole

part

part

33

Navigability

33

ClassBClassA

missing navigability
Usually implies:

A instances have references to one B
B instances have references to one or more A

ClassBClassA

Navigability
<- Arrow

B instances have references to one or more A
A instances DO NOT have reference(s) to B

1

1..*

1..*

1

ClassBClassA

Explicit two-way Navigability
(rare)

A instances have references to one B
B instances have references to one or more A

ClassBClassA

Navigability
Arrow

B instances have references to one or more A
A instances DO NOT have reference(s) to B

1

1..*

1..*

1

37

Generalization

37

38

Generalization
Look for commonalities:

common attributes
– e.g., all vehicles have ?

common methods (behavior)
– e.g., all vehicles can ?

Generalize:

find what is common, and factor it out into a more
general “base” abstraction 38

39

Generalization
Implementation inheritance:

generalize about method signatures, method
implementations, and/or attributes

– i.e., classes having these in common

39

40

Implementation Inheritance
General part:

a base class (or “superclass”) defines the attributes and
methods to be shared

Specific part:

a derived class (or “subclass”) is endowed with the
attributes and methods of its base class

a subclass may “extend” a superclass by adding
attributes and methods, or overriding an existing
method 40

41

Java Implementation Inheritance
public class Shape { // superclass
 protected Location myLocation;
 public Shape() { … }
 public void setLocation(Location p) { … }
 public Location getLocation() { … }
}

public class Circle extends Shape { // subclass
 private int diameter;
 public Circle() { … }
 public void setDiameter(int d) { … }
 …
}
public class Square extends Shape { // subclass
 private int side;
 public Square() { … }
 public void setSide(int s) { … }
}

41

42

UML Inheritance
Implementation inheritance relationship:

“is-a” relationship
between classes

i.e., subclass “is-a”
kind of superclass

i.e., subclass “extends”
superclass

e.g., Circle
“is-a” kind of
Shape 42

Circle

Shape

Square

43

Generalization Principles
Inappropriate inheritance:

subclass inherits from superclass but “is-a”
(is a kind of) relationship does not exist

if “is-a” test fails
– likely not appropriate

if “is-a” test succeeds
– may or may not be appropriate 43

44

Generalization Principles
Liskov substitution principle:

an instance of the subclass should be
substitutable anywhere a reference to a
superclass object is used

Shape s;
s = new Circle(); // instance of subclass
…
Location l = s.getLocation(); // superclass method 44

45

Inheritance Example
Suppose:

class Dog
– provides bark(), fetch()

class Cat extends Dog
– “hides” bark(), “hides” fetch(), and adds

purr()

Question:

Cat “is a” Dog? 45

46

Inheritance Example
Suppose:

class Window
– provides show(), move(), resize()

class FixedSizeWindow extends Window
– “hides” resize()

Question:

FixedSizeWindow “is a” Window? 46

47

Inheritance Example
Suppose:

class ArrayList
– provides add(), get(), remove(),

…
class ProjectTeam extends ArrayList

Question:
ProjectTeam “is a” ArrayList?

47

48

Inheritance Issue
Problem:

superclass method is inherited,
but it is not appropriate

what to do?

48

49

Inheritance Issue
public class Rectangle {
 public Rectangle(Size s) { … }
 public void setLocation(Location p) { … }
 public void setSize(Size s) { … }
 public void draw() { … }
 public void clear() { … }
 public void rotate() { … }
}

public class Square extends Rectangle {

 // inherits setSize(), but want to “hide” it
}
// Square ‘is a’ Rectangle?
// Square specializes Rectangle?

49

50

Override the Method Approach
public class Square extends Rectangle {

 public void setSize(Size s) {
 // should not implement
 }

}

50

51

Aggregation Approach
public class Square {
 private Rectangle rect;
 // Square ‘has a’ Rectangle,
 // not ‘is a’ Rectangle

 public Square(int side) {
 rect = new Rectangle(
 new Size(side, side));
 }
 …
 public void setSide(int newSide) {
 rect.setSize(
 new Size(newSide, newSide));
 }

 public void draw() {
 rect.draw();
 }
 …
} 51

52

Restructuring Approach
public class Quadrilateral {
 …
 public Quadrilateral() { … }
 public void setLocation(Location p) { … }
 public void draw() { … }
 public void clear() { … }
 public void rotate() { … }
}

public class Rectangle extends Quadrilateral {
 public Rectangle(Size s) { … }
 public void setSize(Size s) { … }
}

public class Square extends Quadrilateral {
 public Square(int side) { … }
 public void setSide(int side) { … }
}

52

53

Inheritance
Java abstract class:

declares one or more abstract methods

cannot be instantiated; must be subclassed and have abstract
methods overridden

public abstract class Shape {
 public abstract double area();
 public abstract double perimeter();
 // there may be other instance data and methods
}
class Circle extends Shape {
 public double area() { … }
 public double perimeter() { … }
}

53

54

Interface Inheritance
Java interface:

declares method signatures

classes implement the interface by providing all the method
bodies

public interface Bordered {
 public double area();
 public double perimeter();
}
class Circle implements Bordered {
 public double area() { … }
 public double perimeter() { … }
} 54

55

Interface Inheritance
Java interface:

a “contract”, specifying a capability that an implementing
classes must provide

gives method signatures, but no implementation

cannot be instantiated

may extend other (sub)interfaces

public interface Transformable extends Scalable,
Translatable, Rotatable {
 …
}

55

56

Java Interface
public interface Cloneable {
 public Cloneable clone();
}

public class Color implements Cloneable {
 private int red;
 private int green;
 private int blue;

 public Color(int r, int g, int b) { … }

 public Cloneable clone() {
 return new Color(red, green, blue);
 }
}

Color red = new Color(255, 0, 0);
Color redClone = red.clone();

56

57

UML Interface

57

«guillemets»
denote a
stereotype

«interface»
Cloneable

Color

+clone()

+clone()

Color

Cloneable

59

Abstract Class versus Interface

Differences:

an abstract class may provide a partial
implementation

a class may implement any number of interfaces,
but only extend one superclass

adding a method to an interface will “break” any
class that previously implemented it

59

60

Java Subtleties

60

61

Java Call-by-Value
public class Sender {
 public void send() {
 Receiver r = new Receiver();
 Info argRef = new Info();

 r.receive(argRef);
 argRef.doSomeMore();
 }
}

public class Receiver {
 public void receive(Info infoRef) {
 infoRef.doSomething();
 infoRef = null;
 }
}

61

62

Java Constructors
public class Base {
 protected int value;
 public Base() {

 value = -1;
 }
}

public class Derived extends Base {
 public Derived() {

 }
}

Derived d = new Derived();

62

63

Java Constructors
public class Base {
 protected int value;
 public Base() {
 // implicitly inserted call to super()
 value = -1;
 }
}

public class Derived extends Base {
 public Derived() {
 // implicitly inserted call to super()
 }
}

Derived d = new Derived();

63

64

Java Constructors
public class Base {
 protected int value;
 public Base(int initValue) {
 // implicitly inserted call to super()
 value = initValue;
 }
}

public class Derived extends Base {
 public Derived(int initValue) {
 super(initValue);
 // explicit call to super(…);
 // super(…) if used, must come first
 }
}

Derived d = new Derived(-1);

64

65

Java Constructors
public class Base {
 protected int value;
 public Base(int initValue) {
 // implicitly inserted call to super()
 value = initValue;
 }
 public Base() {
 this(-1);
 // this(…) if used, must come first
 }
}
public class Derived extends Base {
 public Derived(int initValue) {
 super(initValue);
 }
 public Derived() {
 // implicitly inserted call to super()
 }
}
Derived d = new Derived();

65

66

Java Shadowing Data
public class Base {
 protected int value; // 2, 3
}

public class Derived extends Base {
 private int value; // 0, 1

 public void test() {
 value = 0;
 this.value = 1;
 super.value = 2;
 ((Base)this).value = 3;
 }
}

66

67

Java Dynamic Binding
public class Base {
 // default implementation
 public void op() { … }
}
public class Derived1 extends Base {
 // does not override op()
}
public class Derived2 extends Base {
 // override ...
 public void op() { … }
}

Base base;
base = new Derived1(); // implicit upcast
base.op(); // calls op() in Base
base = new Derived2(); // implicit upcast
base.op(); // calls op() in Derived2

67

selection of method
to be run is made at
run time, depending
on type of receiving
object

receiving object does
the “right thing”,
even if the calling
code does not show
its actual type

68

Java Dynamic Binding
Upcast:

“widening” cast is safe due to the principle of substitutability

Base base = new Derived2(); // implicit upcast
base.op(); // calls op() in Derived2

Downcast:

“narrowing” cast must be explicit

Base base = new Derived2(); // implicit upcast
Derived2 derived = (Derived2)base; // downcast
derived.op(); // calls op() in Derived2

68

69

Overriding is not Shadowing
public class Base {
 public int i = 1;
 public int f() { return i; }
}
public class Derived extends Base {
 public int i = 2; // shadowing
 public int f() { return -i; } // overriding
}
public class Test {
 public static void main(String args[]) {
 Derived d = new Derived();
 // d.i is 2
 // d.f() returns -2
 Base b = (Base)d;
 // b.i is 1
 // b.f() returns -2, ‘dynamic binding’
 }
}

69

70

Object Oriented Analysis
and Design

70

71

UML and OOA&D
Analysis:

requirements specification activity
– create UML use cases and class diagrams

Design:

architectural design activity
– refine UML class diagrams

detailed design activity
– refine UML class diagrams
– create UML sequence and state diagrams 71

72

Object-Oriented Analysis
Steps:

discover objects from problem domain
– nouns may lead to classes and attributes
– verbs may lead to relationships and

methods

use CRC cards to note the analysis

evaluate
72

73

Problem Description
The library has books and magazines. Books may be
borrowed by any patron for four weeks while
magazines may only be borrowed for two days. Up to
6 items at a time may be borrowed. The system tracks
when books and magazines are borrowed …

73

74

Nouns
The library has books and magazines.
Books may be borrowed by any patron for
four weeks while magazines may only be
borrowed for two days. Up to 6 items at a
time may be borrowed. The system tracks
when books and magazines are borrowed …

74

75

Verbs
The library has books and magazines. Books may be
borrowed by any patron for four weeks while magazines
may only be borrowed for two days. Up to 6 items at a
time may be borrowed. The system tracks when books
and magazines are borrowed …

75

76

Discover Objects
Entity objects:

things that model the problem domain

Control objects:
things that respond to events and coordinate
services

Boundary objects:
things that interact with the system

– e.g., other applications, devices, sensors,
actors, roles, windows, forms 76

77

Use CRC Cards
Class-Responsibility-Collaborator

explore classes, their responsibilities, their
interactions

organize index cards on a table

77

Class Name
Responsibilities Collaborators
what the class does other classes that

provide needed
services or info

a good name

use the
back for
more details

78

Use CRC Cards

78

Book
Responsibilities Collaborators
maintain information
about a book
…

Library
…

79

Use CRC Cards
Role playing:

refine the cards by acting out a particular scenario with the
candidate objects

“become” the object

what do I do?

what do I need to remember?

with whom do I need to interact?

how do I respond? 79

80

Evaluate
Principles:

during analysis, objects should initially be
technology independent

if an object has only one attribute, perhaps it
should not be a separate object at all

if an object has several highly related attributes,
perhaps these attributes should form a separate
object 80

81

Guidelines
Get the big picture:

understand the problem
– talk to the customer, end users, domain

experts

understand the target environment
– know the implementation constraints

avoid reinventing the wheel
– reuse designs 81

82

Guidelines
Modularity:

increase cohesion
– class has a clear specific responsibility

reduce coupling
– class is not connected to or knows too many others

separate the layers
– identify entity, control, and boundary objects
– allow replacing layers 82

83

Guidelines
Classes:

use good names
– should be meaningful and explanatory

avoid huge “blob” classes
– a single class can’t do everything

use information hiding
– hide changeable details, reveal assumptions 83

84

Guidelines
Generalization:

find superclasses
– look for and factor commonalities among

classes

apply Liskov principle for proper inheritance
– or use is-a test

is-a test is not always enough
– class names can mislead, look at specific

behavior 84

85

Guidelines
Adaptation:

hard to get it right the first time
– recognize problems and fix them

your software won’t go away
– make it easy to adapt to change

simplicity (as simple as possible)
– does not always mean using the first thing that comes

to mind
– elegant designs may need effort 85

A B
One-way Navigability

We can only follow references from A to B

Association
Usually two-way navigability,
but sometimes just not specified

A B
A extends B

A B
A implements B

A B
Composition: strong “has”

B is a part of A:
When instance of A is deleted,
all of its B are also deleted

A B
Aggregation: weak “has”

A has some Bs
The same Bs that A has can
be shared
Not exclusive!

87

More Information

87

Books: free (okay not free but you already
paid for them with your tuition) on the
website:

https://ualberta-cmput301.github.io/
general/resources.html#java-uml-oo-
textbooks

	Objects, UML, and Java
	Slide 2
	Modeling Principles
	Language Evolution
	Language Evolution
	Language Evolution
	Language Evolution
	Abstraction
	Encapsulation
	Decomposition
	Generalization
	Object-Oriented Models
	Object-Oriented Models
	Java
	Java
	Unified Modeling Language (UML)
	Abstraction
	Java and UML Class
	Encapsulation
	Java Class
	Java Class
	UML Class
	Decomposition
	UML Association
	Decomposition
	Java and UML Aggregation
	Java and UML Aggregation
	Decomposition
	UML Composition
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Generalization
	Generalization
	Generalization
	Implementation Inheritance
	Java Implementation Inheritance
	UML Inheritance
	Generalization Principles
	Generalization Principles
	Inheritance Example
	Inheritance Example
	Inheritance Example
	Inheritance Issue
	Inheritance Issue
	Override the Method Approach
	Aggregation Approach
	Restructuring Approach
	Inheritance
	Interface Inheritance
	Interface Inheritance
	Java Interface
	UML Interface
	Abstract Class versus Interface
	Java Subtleties
	Java Call-by-Value
	Java Constructors
	Java Constructors
	Java Constructors
	Java Constructors
	Java Shadowing Data
	Java Dynamic Binding
	Java Dynamic Binding
	Overriding is not Shadowing
	Object Oriented Analysis and Design
	UML and OOA&D
	Object-Oriented Analysis
	Problem Description
	Nouns
	Verbs
	Discover Objects
	Use CRC Cards
	Use CRC Cards
	Use CRC Cards
	Evaluate
	Guidelines
	Guidelines
	Guidelines_clipboard0
	Guidelines
	Guidelines
	Slide 86
	More Information_clipboard0

