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What Makes a Process?
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Software Development Processes

3



Developer Perspective

• Software engineering:
• Manage complexity, scale, lifetime

• Increase quality

• Reduce defects

• Reduce maintenance and support costs

• Reduce time-to-market

• Reuse successful solutions

• Apply methods and tools

• Iterate and optimize
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User Perspective

• Software usability:
• Meets needs

• Increase productivity

• Easy to learn

• Effective to use

• Reduce errors

• Safe to use
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User Perspective

• Experience:
• Satisfying

• Motivating

• Looks nice

• Enjoyable

• Fun
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Meeting Needs

• Verification
• Making sure you develop the system right (i.e., according to the 

requirements)
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Waterfall
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Waterfall Lifecycle Model
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Discussion

• What are some pros and cons of the waterfall model?
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Waterfall

• Pros:
• Easily understood

• Enforces discipline

• Verification at every phase

• Well-documented product
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Waterfall

• Cons:
• Uses a manufacturing view of software

• Most software is not made as a “final” product

• Customer must be patient
• But time-to-market is critical

• Customer sees the system only at the end
• May not satisfy their real needs

• No early feedback
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Waterfall

• Cons:
• Dependence on requirements being “right” at the start

• This is almost never the case

• Could end up building the wrong system

• Requirements must all be known up front
• But cannot always foresee all the necessary and changing requirements

• Summary
• Need to be able to iterate – waterfall is not effective
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Prototyping
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Meeting Needs

• Validation
• Making sure you develop the right system (i.e., what the customer really 

needed)
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Prototyping

• Iterative design:
• Cycling through several designs

• Improving the product with each pass

• Various approaches (in combination):
• Throwaway

• Incremental

• Evolutionary
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Throwaway Prototyping

• Process:
• Build and test prototype

• Gain knowledge for the real product
• What is necessary

• What works

• What does not work

• “Throw away” the prototype, then “develop” the product for real
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Throwaway Prototyping

• Pros:
• More communication between users and developers

• Functionality is introduced earlier, which is good for morale
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Throwaway Prototyping

• Cons:
• Building the prototype must be rapid

• Some qualities may be sacrificed, like security, reliability, etc.

• Temptation to use the throwaway prototype in the final product
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Incremental Prototyping

• Process:
• Triage system into separate “increments”

• I.e., “must do”, “should do”, “could do”

• Develop and add one increment at a time

• Example: Accounting system
• Prototype 1 – general ledger

• Prototype 2 – accounts receivable/payable

• Prototype 3 – payroll
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Evolutionary Prototyping

• Process:
• Feature is refined or “evolved” over time

• Example: Text editor
• Prototype 1 – keyboard Cut and Paste

• Prototype 2 – touchscreen Cut and Paste

• Prototype 3 – Cut and Paste works with Undo
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Other Kinds of Prototypes

• User interface sketches
• Hand-drawn or using drawing tool

• Storyboards
• Graphical depiction of user interface

• Like a comic strip, but only draw the UI
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Other Kinds of Prototypes

• Index cards, Post-It® notes
• E.g., tasks in a project plan

• E.g., classes in an object-oriented analysis

• E.g., pages in a web site structure
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Other Kinds of Prototypes

• Physical mockups:
• E.g., made from wood, clay, or foam
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Other Kinds of Prototypes

• Wizard of Oz:
• “Pay no attention to that man behind the curtain!”

• Feature is “implemented” through human intervention “behind the scenes”
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Staged Delivery
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Staged Delivery

• Developers:
• Deliver the system in a series of working releases or builds

• Users:
• Use some functionality while the rest continues to be developed

• Possible parallelism:
• Production and development systems

• Staggered development streams
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Staggered Builds
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Staged Delivery

• Pros:
• Provides more options

• Different builds focus on specific features

• Reduces estimation errors

• Risks are reduced earlier
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Staged Delivery

• Cons:
• Overhead needed to plan and drive the product toward staged releases

• Extra complexity of supporting multiple versions in the field
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Agile Practices
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“Agile Manifesto”

• http://agilemanifesto.org/

39

http://agilemanifesto.org/
http://agilemanifesto.org/


Agile Principles

• Individuals and interactions

• Working software

• Customer collaboration

• Responding to change
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Agile Principles

• Individuals and interactions:
• Trust motivated individuals

• Face-to-face conversation

• Best work emerges from self-organizing teams

• Team reflects on and adjusts their behavior

• Promote constant, sustainable pace
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Agile Principles

• Working software:
• The main measure of progress

• Continuous, frequent delivery of value
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Agile Principles

• Customer collaboration:
• Customers and developers work together

• Satisfy customer early
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Agile Principles

• Responding to change:
• Welcome changing requirements, even if late

• Technical excellence and good design

• Simplicity – art of maximizing work not done
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Prioritizing Stories (Features)

• High priority
• Must be done

• Complete first

• Risk level:
• Will cause big problems if not done (first)

• Will cause big problems if it breaks
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Prioritizing Stories (Features)

• Medium priority
• Should be done

• Complete second

• Risk level:
• Will cause some problems if not done (before other user stories)

• Will cause some problems if it breaks
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Prioritizing Stories (Features)

• Low priority
• Could be done

• Complete third

• Risk level:
• Only minor problems if not done (before other user stories)

• Only minor problems if it breaks
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Prioritizing Stories (Features)

• No priority
• Nice to have but not needed

• Do it last

• Risk level:
• No problems if not done (before other user stories)
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eXtreme Programming (XP)

• http://www.extremeprogramming.org/

• Predecessor to Agile
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XP

• Philosophy:
• Communication

• Feedback

• Simplicity

• Programmer friendly

• For small teams (up to about 20)

• Code-centric

• Requires courage
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XP

• 12 practices:
• 40-hour week

• Metaphor

• Simple design

• Collective ownership

• Coding standards

• Small releases

• Continuous integration

• Refactoring

• Planning game

• Testing

• On-site customer

• Pair programming

52



XP

• For programmer welfare:
• 40-hour week

• Work no more than 40 hours a week

• Never work overtime a second week in a row
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XP

• For shared understanding:
• Metaphor

• Guide development with a shared story of how the system works

• Simple design
• Design the system as simply as possible; remove extra complexity when discovered
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XP

• For shared development:
• Collective ownership

• Anyone can change any code anywhere in the system at any time

• Coding standards
• Write all code according to rules that enhance communication and understanding 

through code

55



XP

• For continuity:
• Small releases

• Put simple system into production quickly, then release new versions on a very short 
cycle

• Continuous integration
• Integrate and build the system many times a day

• Refactoring
• Restructure the system to improve its design, simplicity, or flexibility
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XP

• For feedback:
• Planning game

• Determine scope of the next iteration and overall release together with customer

• Testing
• Write automated unit tests first before the code; customer writes tests in requirements

• On-site customer
• Include a real, live user on the team, available full-time to answer questions quickly
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XP

• For synergy:
• Pair programming

• Have all production code written with two programmers actively at one machine

• Prevents individual code ownership
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XP

• So why is it called “extreme”?
• If short iterations are good, make them as short as possible

• If simplicity is good, make the simplest thing that works

• If design is good, do it all the time (refactoring)

• If testing is good, write tests first, and do it all the time (test-driven 
development)

• If code reviews are good, do it all the time (pair programming)
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“Pair Programming”
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Discussion

• What are reasons for having programmers working in pairs?

• What are reasons they shouldn’t?
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Pair Programming

• Synergies:
• More ideas

• Complementary skills

• Better consideration of alternative solutions

• Learning
• Expert/student apprenticeship

• Continuous critique to learn new things
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Pair Programming

• Synergies:
• Pressure

• They do not want to let each other down, or waste each other’s time

• Courage
• They give each other confidence to do things they might avoid if alone
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Pair Programming

• Synergies:
• Reviews

• Better able to reveal defects with more eyes looking at the code

• Debugging
• Bugs reveal themselves when one explains the misbehaving code to the other
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Scrum

• One part of an agile development process

• Based on:
• Feedback, roles, meetings, prioritization and planning

• Like classic engineering management, and is often used onsite in civil 
engineering
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Scrum

• Roles:
• Scrum master

• Knows the process (Agile, XP, etc.)

• Protects the team and helps the team follow Scrum

• Product owner
• Represents the customer

• Team members
• Write code
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Scrum

• Meetings:
• Many per iteration

• Daily scrum

• Once per iteration
• Planning meeting

• Review

• Retrospective
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Scrum

• Daily scrum:
• AKA daily “standup”

• Time limited

• Everyone is standing, so they are more uncomfortable and want to finish soon

• Each team member answers 3 questions:
• What did you do?

• What are you going to do?

• What is blocking you?
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Scrum

• Planning meeting:
• First meeting of the iteration (only on first day)

• Input: requirements and user stories

• Output: choose appropriate stories to work on next
• Estimate their cost in time

• Prioritize them

• Fit them into the time left for the iteration
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Scrum

• Review:
• Review work completed

• Review work not completed

• Demonstrate current system
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Scrum

• Retrospective:
• Review issues faced with quality and personnel

• Try to improve the process

• What went well?

• What could be improved?

• Stay calm
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More Information

• Articles:
• “A Rational Design Process: How and Why to Fake It”

• D. L. Parnas and P. C. Clements

• IEEE TSE, 12(2), 1986

• “Software Development Worldwide: The State of the Practice”
• M. Cusumano, A. MacCormack, C. F. Kemerer, and W. Crandall

• IEEE Software, November/December 2003

• “How Microsoft Builds Software”
• M.A. Cusumano and R.W. Selby

• Comm. ACM, 4(6), 1997
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More Information

• Books:
• Software Project Survival Guide

• S. McConnell

• Microsoft Press, 1998

• The Build Master
• V. Maraia

• Addison-Wesley, 2005

• Extreme Programming Explained
• K. Beck

• Addison-Wesley, 2004

• Pair Programming Illuminated
• L. Williams and R. Kessler

• Addison-Wesley, 2002
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