
Software Process

Images reproduced in these slides have been included under section 29 of the Copyright Act, as fair dealing for research, private study, criticism, or review. Further distribution or uses may infringe copyright.

Abram Hindle Henry Tang
hindle1@ualberta.ca hktang@ualberta.ca

Department of Computing Science
University of Alberta

CMPUT 301 – Introduction to Software Engineering
Slides adapted from Dr. Hazel Campbell, Dr. Ken Wong

What Makes a Process?

2

Software Development Processes

3

Developer Perspective

• Software engineering:
• Manage complexity, scale, lifetime

• Increase quality

• Reduce defects

• Reduce maintenance and support costs

• Reduce time-to-market

• Reuse successful solutions

• Apply methods and tools

• Iterate and optimize

4

User Perspective

• Software usability:
• Meets needs

• Increase productivity

• Easy to learn

• Effective to use

• Reduce errors

• Safe to use

5

User Perspective

• Experience:
• Satisfying

• Motivating

• Looks nice

• Enjoyable

• Fun

6

Meeting Needs

• Verification
• Making sure you develop the system right (i.e., according to the

requirements)

7

Waterfall

9

Waterfall Lifecycle Model

10

Requirements
Specification

Architectural
Design

Detailed
Design

Coding and
Unit Testing

Integration and
Testing

Delivery and
Operation

Maintenance and
Support

Discussion

• What are some pros and cons of the waterfall model?

11

Waterfall

• Pros:
• Easily understood

• Enforces discipline

• Verification at every phase

• Well-documented product

12

Waterfall

• Cons:
• Uses a manufacturing view of software

• Most software is not made as a “final” product

• Customer must be patient
• But time-to-market is critical

• Customer sees the system only at the end
• May not satisfy their real needs

• No early feedback

13

Waterfall

• Cons:
• Dependence on requirements being “right” at the start

• This is almost never the case

• Could end up building the wrong system

• Requirements must all be known up front
• But cannot always foresee all the necessary and changing requirements

• Summary
• Need to be able to iterate – waterfall is not effective

14

Prototyping

15

Meeting Needs

• Validation
• Making sure you develop the right system (i.e., what the customer really

needed)

16

Prototyping

• Iterative design:
• Cycling through several designs

• Improving the product with each pass

• Various approaches (in combination):
• Throwaway

• Incremental

• Evolutionary

17

Throwaway Prototyping

• Process:
• Build and test prototype

• Gain knowledge for the real product
• What is necessary

• What works

• What does not work

• “Throw away” the prototype, then “develop” the product for real

18

Throwaway Prototyping

• Pros:
• More communication between users and developers

• Functionality is introduced earlier, which is good for morale

19

Throwaway Prototyping

• Cons:
• Building the prototype must be rapid

• Some qualities may be sacrificed, like security, reliability, etc.

• Temptation to use the throwaway prototype in the final product

20

Incremental Prototyping

• Process:
• Triage system into separate “increments”

• I.e., “must do”, “should do”, “could do”

• Develop and add one increment at a time

• Example: Accounting system
• Prototype 1 – general ledger

• Prototype 2 – accounts receivable/payable

• Prototype 3 – payroll

21

Evolutionary Prototyping

• Process:
• Feature is refined or “evolved” over time

• Example: Text editor
• Prototype 1 – keyboard Cut and Paste

• Prototype 2 – touchscreen Cut and Paste

• Prototype 3 – Cut and Paste works with Undo

22

Other Kinds of Prototypes

• User interface sketches
• Hand-drawn or using drawing tool

• Storyboards
• Graphical depiction of user interface

• Like a comic strip, but only draw the UI

23

Other Kinds of Prototypes

• Index cards, Post-It® notes
• E.g., tasks in a project plan

• E.g., classes in an object-oriented analysis

• E.g., pages in a web site structure

24

Other Kinds of Prototypes

• Physical mockups:
• E.g., made from wood, clay, or foam

26

© Canon

27

© Alan Kay

Other Kinds of Prototypes

• Wizard of Oz:
• “Pay no attention to that man behind the curtain!”

• Feature is “implemented” through human intervention “behind the scenes”

28© MGM

Staged Delivery

29

Staged Delivery

• Developers:
• Deliver the system in a series of working releases or builds

• Users:
• Use some functionality while the rest continues to be developed

• Possible parallelism:
• Production and development systems

• Staggered development streams

30

Staggered Builds

31

Analysis Design Code Test

Analysis Design Code Test

Analysis Design Code Test

t

deliver build i

deliver build i+1

deliver build i+2

Staged Delivery

• Pros:
• Provides more options

• Different builds focus on specific features

• Reduces estimation errors

• Risks are reduced earlier

32

Staged Delivery

• Cons:
• Overhead needed to plan and drive the product toward staged releases

• Extra complexity of supporting multiple versions in the field

33

Agile Practices

38

“Agile Manifesto”

• http://agilemanifesto.org/

39

http://agilemanifesto.org/
http://agilemanifesto.org/

Agile Principles

• Individuals and interactions

• Working software

• Customer collaboration

• Responding to change

40

Agile Principles

• Individuals and interactions:
• Trust motivated individuals

• Face-to-face conversation

• Best work emerges from self-organizing teams

• Team reflects on and adjusts their behavior

• Promote constant, sustainable pace

41

Agile Principles

• Working software:
• The main measure of progress

• Continuous, frequent delivery of value

42

Agile Principles

• Customer collaboration:
• Customers and developers work together

• Satisfy customer early

43

Agile Principles

• Responding to change:
• Welcome changing requirements, even if late

• Technical excellence and good design

• Simplicity – art of maximizing work not done

44

Prioritizing Stories (Features)

• High priority
• Must be done

• Complete first

• Risk level:
• Will cause big problems if not done (first)

• Will cause big problems if it breaks

45

Prioritizing Stories (Features)

• Medium priority
• Should be done

• Complete second

• Risk level:
• Will cause some problems if not done (before other user stories)

• Will cause some problems if it breaks

46

Prioritizing Stories (Features)

• Low priority
• Could be done

• Complete third

• Risk level:
• Only minor problems if not done (before other user stories)

• Only minor problems if it breaks

47

Prioritizing Stories (Features)

• No priority
• Nice to have but not needed

• Do it last

• Risk level:
• No problems if not done (before other user stories)

48

eXtreme Programming (XP)

• http://www.extremeprogramming.org/

• Predecessor to Agile

50

http://www.extremeprogramming.org/
http://www.extremeprogramming.org/

XP

• Philosophy:
• Communication

• Feedback

• Simplicity

• Programmer friendly

• For small teams (up to about 20)

• Code-centric

• Requires courage

51

Same as Agile

XP

• 12 practices:
• 40-hour week

• Metaphor

• Simple design

• Collective ownership

• Coding standards

• Small releases

• Continuous integration

• Refactoring

• Planning game

• Testing

• On-site customer

• Pair programming

52

XP

• For programmer welfare:
• 40-hour week

• Work no more than 40 hours a week

• Never work overtime a second week in a row

53

XP

• For shared understanding:
• Metaphor

• Guide development with a shared story of how the system works

• Simple design
• Design the system as simply as possible; remove extra complexity when discovered

54

XP

• For shared development:
• Collective ownership

• Anyone can change any code anywhere in the system at any time

• Coding standards
• Write all code according to rules that enhance communication and understanding

through code

55

XP

• For continuity:
• Small releases

• Put simple system into production quickly, then release new versions on a very short
cycle

• Continuous integration
• Integrate and build the system many times a day

• Refactoring
• Restructure the system to improve its design, simplicity, or flexibility

56

XP

• For feedback:
• Planning game

• Determine scope of the next iteration and overall release together with customer

• Testing
• Write automated unit tests first before the code; customer writes tests in requirements

• On-site customer
• Include a real, live user on the team, available full-time to answer questions quickly

57

XP

• For synergy:
• Pair programming

• Have all production code written with two programmers actively at one machine

• Prevents individual code ownership

58

XP

• So why is it called “extreme”?
• If short iterations are good, make them as short as possible

• If simplicity is good, make the simplest thing that works

• If design is good, do it all the time (refactoring)

• If testing is good, write tests first, and do it all the time (test-driven
development)

• If code reviews are good, do it all the time (pair programming)

59

“Pair Programming”

60

https://www.commitstrip.com/en/2012/08/14/pair-programming/?

© Geek & Poke

Discussion

• What are reasons for having programmers working in pairs?

• What are reasons they shouldn’t?

61

Pair Programming

• Synergies:
• More ideas

• Complementary skills

• Better consideration of alternative solutions

• Learning
• Expert/student apprenticeship

• Continuous critique to learn new things

62

Pair Programming

• Synergies:
• Pressure

• They do not want to let each other down, or waste each other’s time

• Courage
• They give each other confidence to do things they might avoid if alone

63

Pair Programming

• Synergies:
• Reviews

• Better able to reveal defects with more eyes looking at the code

• Debugging
• Bugs reveal themselves when one explains the misbehaving code to the other

64

Scrum

• One part of an agile development process

• Based on:
• Feedback, roles, meetings, prioritization and planning

• Like classic engineering management, and is often used onsite in civil
engineering

66

Scrum

• Roles:
• Scrum master

• Knows the process (Agile, XP, etc.)

• Protects the team and helps the team follow Scrum

• Product owner
• Represents the customer

• Team members
• Write code

67

Scrum

• Meetings:
• Many per iteration

• Daily scrum

• Once per iteration
• Planning meeting

• Review

• Retrospective

68

Scrum

• Daily scrum:
• AKA daily “standup”

• Time limited

• Everyone is standing, so they are more uncomfortable and want to finish soon

• Each team member answers 3 questions:
• What did you do?

• What are you going to do?

• What is blocking you?

69

Scrum

• Planning meeting:
• First meeting of the iteration (only on first day)

• Input: requirements and user stories

• Output: choose appropriate stories to work on next
• Estimate their cost in time

• Prioritize them

• Fit them into the time left for the iteration

70

Scrum

• Review:
• Review work completed

• Review work not completed

• Demonstrate current system

71

Scrum

• Retrospective:
• Review issues faced with quality and personnel

• Try to improve the process

• What went well?

• What could be improved?

• Stay calm

72

More Information

• Articles:
• “A Rational Design Process: How and Why to Fake It”

• D. L. Parnas and P. C. Clements

• IEEE TSE, 12(2), 1986

• “Software Development Worldwide: The State of the Practice”
• M. Cusumano, A. MacCormack, C. F. Kemerer, and W. Crandall

• IEEE Software, November/December 2003

• “How Microsoft Builds Software”
• M.A. Cusumano and R.W. Selby

• Comm. ACM, 4(6), 1997

73

More Information

• Books:
• Software Project Survival Guide

• S. McConnell

• Microsoft Press, 1998

• The Build Master
• V. Maraia

• Addison-Wesley, 2005

• Extreme Programming Explained
• K. Beck

• Addison-Wesley, 2004

• Pair Programming Illuminated
• L. Williams and R. Kessler

• Addison-Wesley, 2002
74

	Slide 1: Software Process
	Slide 2: What Makes a Process?
	Slide 3: Software Development Processes
	Slide 4: Developer Perspective
	Slide 5: User Perspective
	Slide 6: User Perspective
	Slide 7: Meeting Needs
	Slide 9: Waterfall
	Slide 10: Waterfall Lifecycle Model
	Slide 11: Discussion
	Slide 12: Waterfall
	Slide 13: Waterfall
	Slide 14: Waterfall
	Slide 15: Prototyping
	Slide 16: Meeting Needs
	Slide 17: Prototyping
	Slide 18: Throwaway Prototyping
	Slide 19: Throwaway Prototyping
	Slide 20: Throwaway Prototyping
	Slide 21: Incremental Prototyping
	Slide 22: Evolutionary Prototyping
	Slide 23: Other Kinds of Prototypes
	Slide 24: Other Kinds of Prototypes
	Slide 26: Other Kinds of Prototypes
	Slide 27
	Slide 28: Other Kinds of Prototypes
	Slide 29: Staged Delivery
	Slide 30: Staged Delivery
	Slide 31: Staggered Builds
	Slide 32: Staged Delivery
	Slide 33: Staged Delivery
	Slide 38: Agile Practices
	Slide 39: “Agile Manifesto”
	Slide 40: Agile Principles
	Slide 41: Agile Principles
	Slide 42: Agile Principles
	Slide 43: Agile Principles
	Slide 44: Agile Principles
	Slide 45: Prioritizing Stories (Features)
	Slide 46: Prioritizing Stories (Features)
	Slide 47: Prioritizing Stories (Features)
	Slide 48: Prioritizing Stories (Features)
	Slide 50: eXtreme Programming (XP)
	Slide 51: XP
	Slide 52: XP
	Slide 53: XP
	Slide 54: XP
	Slide 55: XP
	Slide 56: XP
	Slide 57: XP
	Slide 58: XP
	Slide 59: XP
	Slide 60: “Pair Programming”
	Slide 61: Discussion
	Slide 62: Pair Programming
	Slide 63: Pair Programming
	Slide 64: Pair Programming
	Slide 66: Scrum
	Slide 67: Scrum
	Slide 68: Scrum
	Slide 69: Scrum
	Slide 70: Scrum
	Slide 71: Scrum
	Slide 72: Scrum
	Slide 73: More Information
	Slide 74: More Information

