
1

Software Process

Dr. Hazel Campbell
Dr. Abram Hindle

Dr. Ken Wong
Department of Computing Science

University of Alberta

Images reproduced in these slides have been included under section 29 of the
Copyright Act, as fair dealing for research, private study, criticism, or review. Further
distribution or uses may infringe copyright.

2

What makes a Process?

3

4

Developer Perspective

● Software Engineering:
– manage complexity, scale, lifetime
– increase quality
– reduce defects
– reduce maintenance and support costs
– reduce time-to-market
– reuse successful solutions
– apply methods and tools
– iterate and optimize

5

User Perspective

● Software Usability:
– meets needs
– increase productivity
– easy to learn
– effective to use
– reduce errors
– safe to use

6

User Perspective

● User Experience (UX):
– Satisfying
– Motivating
– Looks nice (aesthetically pleasing)
– Enjoyable
– Fun

7

Meeting Needs

● Verification
– making sure you develop the system right

○ according to the requirements

8

Waterfall Lifecycle Model
Requirements
Specification

Architectural
Design

Detailed
Design

Coding and
Unit Testing

Integration and
Testing

Delivery and
Operation

Maintenance and
Support

9

Waterfall

● Pros:
– Easily understood
– Enforces Discipline
– Verification at every phase
– Well documented product

10

Waterfall

● Cons
– uses a manufacturing view of software

○ most software is not made as a “final” product
– customer must be patient

○ but time-to-market is critical
– customer sees the system only at the end

○ may not satisfy their real needs
● No early feedback!

11

Waterfall

● Cons
– Requirements need to be right (accurate) at the start

○ This is almost never the case
○ Could end up building the wrong system
○ Hard to predict all necessary requirements
○ Hard to react to changing requirements

● Waterfall doesn’t work
– We need to be able to iterate!

12

Prototyping

● It’s hard to get the requirements right at the
start...

● But we need validation...
– making sure we develop the right system
– Making sure we build what the customer really needs

● One solution: Prototyping!

13

Prototyping

● Iterative design
– Cycling through several designs
– Improve the product with each pass

14

Prototyping

● Types of prototyping:
– Throwaway Prototyping
– Incremental Prototyping
– Evolutionary Prototyping

● These can be combined!

15

Throwaway Prototyping

● Process
– Build and test prototype
– Learn about:

○ What’s needed for the real product
○ What works
○ What does not work

– Throw away the prototype
– Then develop the real product

16

Throwaway Prototyping

● Pros
– more communication between users and developers
– functionality is introduced earlier, which is good for

morale

17

Throwaway Prototyping

● Cons
– The throwaway prototype must be built very quickly
– some qualities may be sacrificed,like security,

reliability, etc.
– temptation to use the throwaway prototype in the

final product

18

Incremental Prototyping

● Process
– Triage system into separate “increments”

○ Example: “must do”, “should do”, “could do”
– Develop and add one increment at a time

● Example: Accounting System
– Prototype 1: general ledger
– Prototype 2: accounts receivable/payable
– Prototype 3: payroll

19

Evolutionary Prototyping

● Process
– Each feature is refined or “evolved” over time

● Example: Text Editor
– Prototype #1: Keyboard Cut and Paste
– Prototype #2: Touchscreen Cut and Paste
– Prototype #3: Cut and Paste works with Undo

20

Other Kinds of Prototypes

● User Interface Sketches
– Hand Drawn
– or using a drawing Tool

○ Figma, Balsamiq, etc.
● Storyboards

– Graphical depiction of the user interface
– Like a comic strip, but only draw the UI

21

Other Kinds of Prototypes

● Physical Mockups

22

Other Kinds of Prototypes

● Wizard of Oz
– “Pay no attention to that man behind the curtain!”
– feature is actually “implemented” through human

intervention “behind the scenes”

© MGM

23

Agile Practices

● Created with the release of the
● “Agile Manifesto”

– http://agilemanifesto.org/

24

4 Agile Values

● “Individuals and Interactions”
● “Working Software”
● “Customer Collaboration”
● “Responding to Change”

26

4 Agile Values

● “Individuals and Interactions”
– trust motivated individuals
– face-to-face conversation

– best work emerges from self-organizing teams
– team reflects on and adjusts their behavior

– promote constant, sustainable pace

27

4 Agile Values

● “Working software”:
– the main measure of progress
– continuous, frequent delivery of value

28

4 Agile Values

● “Customer collaboration”:
– customers and developers work together
– satisfy customer early

29

4 Agile Values

● “Responding to change”:
– welcome changing requirements, even late

– technical excellence and good design
– simplicity—art of maximizing work not done

30

Interlude: Prioritizing Stories (Features)

● High priority
– Must be done
– Do it first

– Risk level:
○ Will cause big problems if we don’t do it (first)
○ Will cause big problems if it breaks

31

Interlude: Prioritizing Stories (Features)

● Medium priority
– Should be done
– Do it second

– Risk level:
○ Will cause some problems if we don’t do it

● (before other user stories)
○ Will cause some problems if it breaks

32

Interlude: Prioritizing Stories (Features)

● Low priority
– Could be done
– Do it third

– Risk level:
Only minor problems if we don’t do it

● (before other user stories)
○ Only minor problems if it breaks

33

Interlude: Prioritizing Stories (Features)

● No priority
– We’d like it but we won’t get it
– Do it last

– Risk level:
○ No problems if we don’t do it

● (before other user stories)

34

Interlude: Estimating Cost

● Agile “flying fingers” method – wisdom of the crowd!
1)Read a user story, discuss it if necessary
2)Then, everyone puts their hand behind their back, out of

sight, holding up the number of fingers for the user story
3)Someone counts: one... two... three...
4)All the fingers come flying out at once!
5)If the deviation is small – choose a mean and write it

down. Move to the next story.
6)If there is substantial disagreement – discuss and repeat!

35

eXtreme Programming (XP)

● http://www.extremeprogramming.org/
● Predecessor to Agile

36

XP
● Philosophy:

– communication
– feedback
– simplicity

– programmer friendly
– code-centric
– for small teams (up to about 20)

– requires courage

Same as Agile!

37

XP

● 12 practices:
– 40 hour week

– metaphor
– simple design
– collective ownership
– coding standards

– small releases
– continuous integration
– refactoring

– planning game
– testing
– on-site customer

– pair programming

Same as Agile!

38

XP

● For programmer welfare:
– “40 hour week”
– work no more than 40 h a week
– never work overtime a second week in a row

39

XP

● For shared understanding:
– “metaphor”

○ guide development with a shared story of how the
system works

– “simple design”
○ design the system as simply as possible; remove extra

complexity when discovered

40

XP

● For continuity:
– “small releases”

○ put simple system into production quickly, then release new
versions on a very short cycle

– “continuous integration”
○ integrate and build the system many times a day

– “refactoring”
○ restructure the system to improve its design, simplicity, or

flexibility

41

XP

● For feedback:
– “planning game”

○ determine scope of the next iteration and overall release
together with customer

– “testing”
○ write automated unit tests first before the code; customer

writes tests in requirements

– “on-site customer”
○ include real, live user on the team, available full-time to

answer questions quickly

42

XP

● For synergy:
– “pair programming”

○ have all production code written with two
programmers actively at one machine

○ Prevents Individual Code Ownership!

43

XP: So why is it called “extreme?”

● if short iterations are good,
– make them really short

● if simplicity is good,
– make the simplest thing that works

● if design is good,
– do it all the time (refactoring)

● if testing is good,
– write tests first, and do it all the time (test-driven

development)
● if code reviews are good,

– do it all the time (pair programming)

44

Pair Programming

● Synergies:
– more ideas

○ complementary skills
○ better consideration of alternative solutions

– learning
○ expert/student apprenticeship
○ continuous critique to learn new things

45

Pair Programming

● Synergies:
– pressure

○ they do not want to let each other down, or waste
each other’s time

– courage
○ they give each other confidence to do things they

might avoid if alone

46

Pair Programming

● Synergies:
– reviews

○ better able to reveal defects with more eyes looking at
the code

– debugging
○ bugs reveal themselves when one explains the

misbehaving code to the other

47

Scrum

● One part of an agile development process
– based on

○ Feedback
○ Roles
○ Meetings
○ Prioritization
○ planning

– like classic engineering management, and is often
used onsite in civil engineering

48

Scrum

● Roles:
– Scrum master

○ knows the process (agile, xp...)
○ protects the team and helps the team follow Scrum

– product owner
○ represents the customer

– team members
○ write the code

49

Scrum

● Meetings:
– daily scrum (1 per day)
– planning meeting (1 per iteration)
– review meeting (1 per iteration)
– retrospective meeting (1 per iteration)

50

Scrum

● Daily scrum also known as standup
– time limited
– everyone is standing, so they are more uncomfortable

and want to finish soon

– each team member answers 3 questions
○ what did you do?
○ what are you going to do?
○ what is blocking you?

51

Scrum

● Planning meeting:
– first meeting of the iteration (only on first day)

– input: requirements and user stories
– output: choose stories to work on next

○ estimate their cost in time
○ prioritize them
○ fit them into the time left for the iteration

52

Scrum

● Review Meeting
– review work completed
– review work not completed
– demonstrate current system

53

Scrum

● Retrospective Meeting
– review issues faced with quality and personnel
– try to improve the process
– what went well?
– what could be improved?
– stay calm

More Information
Articles:

“A Rational Design Process:
How and Why to Fake It”

● D. L. Parnas and P. C. Clements

● IEEE TSE, 12(2), 1986

“Software Development Worldwide:
The State of the Practice”

● M. Cusumano, A. MacCormack,
C. F. Kemerer, and W. Crandall

● IEEE Software, November/December 2003

54

More Information
Articles:

“How Microsoft Builds Software”

● M.A. Cusumano and R.W. Selby

● Comm. ACM, 4(6), 1997

55

More Information
Books:

Software Project Survival Guide

● S. McConnell

● Microsoft Press, 1998

The Build Master

● V. Maraia

● Addison-Wesley, 2005

56

More Information
Books:

Extreme Programming Explained

● K. Beck

● Addison-Wesley, 2004

Pair Programming Illuminated

● L. Williams and R. Kessler

● Addison-Wesley, 2002

57

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	More Information_clipboard0
	More Information_clipboard1
	More Information_clipboard2
	More Information

