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What makes a Process?
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Developer Perspective

● Software Engineering:
– manage complexity, scale, lifetime
– increase quality
– reduce defects
– reduce maintenance and support costs
– reduce time-to-market
– reuse successful solutions
– apply methods and tools
– iterate and optimize
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User Perspective

● Software Usability:
– meets needs
– increase productivity
– easy to learn
– effective to use
– reduce errors
– safe to use
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User Perspective

● User Experience (UX):
– Satisfying
– Motivating
– Looks nice (aesthetically pleasing)
– Enjoyable
– Fun
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Meeting Needs

● Verification
– making sure you develop the system right

○ according to the requirements
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Waterfall Lifecycle Model
Requirements
Specification

Architectural
Design

Detailed
Design

Coding and
Unit Testing

Integration and
Testing

Delivery and
Operation

Maintenance and
Support
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Waterfall

● Pros:
– Easily understood
– Enforces Discipline
– Verification at every phase
– Well documented product
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Waterfall

● Cons
– uses a manufacturing view of software

○ most software is not made as a “final” product
– customer must be patient

○ but time-to-market is critical
– customer sees the system only at the end

○ may not satisfy their real needs
● No early feedback!
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Waterfall

● Cons
– Requirements need to be right (accurate) at the start

○ This is almost never the case
○ Could end up building the wrong system
○ Hard to predict all necessary requirements
○ Hard to react to changing requirements

● Waterfall doesn’t work
– We need to be able to iterate!
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Prototyping

● It’s hard to get the requirements right at the 
start...

● But we need validation...
– making sure we develop the right system
– Making sure we build what the customer really needs

● One solution: Prototyping!



13

Prototyping

● Iterative design
– Cycling through several designs
– Improve the product with each pass
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Prototyping

● Types of prototyping:
– Throwaway Prototyping
– Incremental  Prototyping
– Evolutionary  Prototyping

● These can be combined!
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Throwaway Prototyping

● Process
– Build and test prototype
– Learn about:

○ What’s needed for the real product
○ What works
○ What does not work

– Throw away the prototype
– Then develop the real product
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Throwaway Prototyping

● Pros
– more communication between users and developers
– functionality is introduced earlier, which is good for 

morale
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Throwaway Prototyping

● Cons
– The throwaway prototype must be built very quickly
– some qualities may be sacrificed,like security, 

reliability, etc.
– temptation to use the throwaway prototype in the 

final product
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Incremental Prototyping

● Process
– Triage system into separate “increments”

○ Example: “must do”, “should do”, “could do”
– Develop and add one increment at a time

● Example: Accounting System
– Prototype 1: general ledger
– Prototype 2: accounts receivable/payable
– Prototype 3: payroll
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Evolutionary Prototyping

● Process
– Each feature is refined or “evolved” over time

● Example: Text Editor
– Prototype #1: Keyboard Cut and Paste
– Prototype #2: Touchscreen Cut and Paste
– Prototype #3: Cut and Paste works with Undo
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Other Kinds of Prototypes

● User Interface Sketches
– Hand Drawn
– or using a drawing Tool

○ Figma, Balsamiq, etc.
● Storyboards

– Graphical depiction of the user interface
– Like a comic strip, but only draw the UI
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Other Kinds of Prototypes

● Physical Mockups
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Other Kinds of Prototypes

● Wizard of Oz
– “Pay no attention to that man behind the curtain!”
– feature is actually “implemented” through human 

intervention “behind the scenes”

© MGM
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Agile Practices

● Created with the release of the
● “Agile Manifesto”

– http://agilemanifesto.org/
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4 Agile Values

● “Individuals and Interactions”
● “Working Software”
● “Customer Collaboration”
● “Responding to Change”
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4 Agile Values

● “Individuals and Interactions”
– trust motivated individuals
– face-to-face conversation

– best work emerges from self-organizing teams
– team reflects on and adjusts their behavior

– promote constant, sustainable pace
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4 Agile Values

● “Working software”:
– the main measure of progress
– continuous, frequent delivery of value
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4 Agile Values

● “Customer collaboration”:
– customers and developers work together
– satisfy customer early
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4 Agile Values

● “Responding to change”:
– welcome changing requirements, even late

– technical excellence and good design
– simplicity—art of maximizing work not done
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Interlude:  Prioritizing Stories (Features)

● High priority
– Must be done
– Do it first

– Risk level:
○ Will cause big problems if we don’t do it (first)
○ Will cause big problems if it breaks
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Interlude:  Prioritizing Stories (Features)

● Medium priority
– Should be done
– Do it second

– Risk level:
○ Will cause some problems if we don’t do it 

● (before other user stories)
○ Will cause some problems if it breaks
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Interlude:  Prioritizing Stories (Features)

● Low priority
– Could be done
– Do it third

– Risk level:
Only minor problems if we don’t do it 

● (before other user stories)
○ Only minor problems if it breaks
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Interlude:  Prioritizing Stories (Features)

● No priority
– We’d like it but we won’t get it
– Do it last

– Risk level:
○ No problems if we don’t do it 

● (before other user stories)
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Interlude: Estimating Cost

● Agile “flying fingers” method – wisdom of the crowd!
1)Read a user story, discuss it if necessary
2)Then, everyone puts their hand behind their back, out of 

sight, holding up the number of fingers for the user story
3)Someone counts: one... two... three...
4)All the fingers come flying out at once!
5)If the deviation is small – choose a mean and write it 

down. Move to the next story.
6)If there is substantial disagreement – discuss and repeat!
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eXtreme Programming (XP)

● http://www.extremeprogramming.org/
● Predecessor to Agile
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XP
● Philosophy:

– communication
– feedback
– simplicity

– programmer friendly
– code-centric
– for small teams (up to about 20)

– requires courage

Same as Agile!
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XP

● 12 practices:
– 40 hour week

– metaphor
– simple design
– collective ownership
– coding standards

– small releases
– continuous integration
– refactoring

– planning game
– testing
– on-site customer

– pair programming

Same as Agile!
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XP

● For programmer welfare:
– “40 hour week”
– work no more than 40 h a week
– never work overtime a second week in a row
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XP

● For shared understanding:
– “metaphor”

○ guide development with a shared story of how the 
system works

– “simple design”
○ design the system as simply as possible; remove extra 

complexity when discovered
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XP

● For continuity:
– “small releases”

○ put simple system into production quickly, then release new 
versions on a very short cycle

– “continuous integration”
○ integrate and build the system many times a day

– “refactoring”
○ restructure the system to improve its design, simplicity, or 

flexibility
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XP

● For feedback:
– “planning game”

○ determine scope of the next iteration and overall release 
together with customer

– “testing”
○ write automated unit tests first before the code; customer 

writes tests in requirements

– “on-site customer”
○ include real, live user on the team, available full-time to 

answer questions quickly
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XP

● For synergy:
– “pair programming”

○ have all production code written with two 
programmers actively at one machine

○ Prevents Individual Code Ownership!



43

XP: So why is it called “extreme?”

● if short iterations are good,
– make them really short

● if simplicity is good, 
– make the simplest thing that works

● if design is good,
– do it all the time (refactoring)

● if testing is good,
– write tests first, and do it all the time (test-driven 

development)
● if code reviews are good,

– do it all the time (pair programming)



44

Pair Programming

● Synergies:
– more ideas

○ complementary skills
○ better consideration of alternative solutions

– learning
○ expert/student apprenticeship
○ continuous critique to learn new things
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Pair Programming

● Synergies:
– pressure

○ they do not want to let each other down, or waste 
each other’s time

– courage
○ they give each other confidence to do things they 

might avoid if alone
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Pair Programming

● Synergies:
– reviews

○ better able to reveal defects with more eyes looking at 
the code

– debugging
○ bugs reveal themselves when one explains the 

misbehaving code to the other
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Scrum

● One part of an agile development process
– based on 

○ Feedback
○ Roles
○ Meetings
○ Prioritization
○ planning

– like classic engineering management, and is often 
used onsite in civil engineering
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Scrum

● Roles:
– Scrum master

○ knows the process (agile, xp...)
○ protects the team and helps the team follow Scrum

– product owner
○ represents the customer

– team members
○ write the code
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Scrum

● Meetings:
– daily scrum (1 per day)
– planning meeting (1 per iteration)
– review meeting (1 per iteration)
– retrospective meeting (1 per iteration)
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Scrum

● Daily scrum also known as standup
– time limited
– everyone is standing, so they are more uncomfortable 

and want to finish soon

– each team member answers 3 questions
○ what did you do?
○ what are you going to do?
○ what is blocking you?
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Scrum

● Planning meeting:
– first meeting of the iteration (only on first day)

– input: requirements and user stories
– output: choose stories to work on next

○ estimate their cost in time
○ prioritize them
○ fit them into the time left for the iteration
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Scrum

● Review Meeting
– review work completed
– review work not completed
– demonstrate current system
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Scrum

● Retrospective Meeting
– review issues faced with quality and personnel
– try to improve the process
– what went well?
– what could be improved?
– stay calm



More Information
Articles:

“A Rational Design Process:
How and Why to Fake It”

● D. L. Parnas and P. C. Clements

● IEEE TSE, 12(2), 1986

“Software Development Worldwide:
The State of the Practice”

● M. Cusumano, A. MacCormack,
C. F. Kemerer, and W. Crandall

● IEEE Software, November/December 2003
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More Information
Articles:

“How Microsoft Builds Software”

● M.A. Cusumano and R.W. Selby

● Comm. ACM, 4(6), 1997
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More Information
Books:

Software Project Survival Guide

● S. McConnell

● Microsoft Press, 1998

The Build Master

● V. Maraia

● Addison-Wesley, 2005
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More Information
Books:

Extreme Programming Explained

● K. Beck

● Addison-Wesley, 2004

Pair Programming Illuminated

● L. Williams and R. Kessler

● Addison-Wesley, 2002
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