
Requirements

Images reproduced in these slides have been included under section 29 of the Copyright Act, as fair dealing for research, private study, criticism, or review. Further distribution or uses may infringe copyright.

Abram Hindle Henry Tang
hindle1@ualberta.ca hktang@ualberta.ca

Department of Computing Science
University of Alberta

CMPUT 301 – Introduction to Software Engineering
Slides adapted from Dr. Hazel Campbell, Dr. Ken Wong

Importance of Requirements

• https://www.projectsmart.co.uk/it-project-management/the-
curious-case-of-the-chaos-report-2009.php

3

Reason for Project Failure % of Responses

Incomplete requirements 13.1

Lack of user involvement 12.4

Lack of resources 10.6

Unrealistic expectations 9.9

Lack of management support 9.3

Changing requirements 8.7

Lack of planning 8.1

System no longer needed 7.5

https://www.projectsmart.co.uk/it-project-management/the-curious-case-of-the-chaos-report-2009.php
https://www.projectsmart.co.uk/it-project-management/the-curious-case-of-the-chaos-report-2009.php
https://www.projectsmart.co.uk/it-project-management/the-curious-case-of-the-chaos-report-2009.php
https://www.projectsmart.co.uk/it-project-management/the-curious-case-of-the-chaos-report-2009.php
https://www.projectsmart.co.uk/it-project-management/the-curious-case-of-the-chaos-report-2009.php
https://www.projectsmart.co.uk/it-project-management/the-curious-case-of-the-chaos-report-2009.php
https://www.projectsmart.co.uk/it-project-management/the-curious-case-of-the-chaos-report-2009.php
https://www.projectsmart.co.uk/it-project-management/the-curious-case-of-the-chaos-report-2009.php
https://www.projectsmart.co.uk/it-project-management/the-curious-case-of-the-chaos-report-2009.php
https://www.projectsmart.co.uk/it-project-management/the-curious-case-of-the-chaos-report-2009.php
https://www.projectsmart.co.uk/it-project-management/the-curious-case-of-the-chaos-report-2009.php
https://www.projectsmart.co.uk/it-project-management/the-curious-case-of-the-chaos-report-2009.php
https://www.projectsmart.co.uk/it-project-management/the-curious-case-of-the-chaos-report-2009.php
https://www.projectsmart.co.uk/it-project-management/the-curious-case-of-the-chaos-report-2009.php
https://www.projectsmart.co.uk/it-project-management/the-curious-case-of-the-chaos-report-2009.php
https://www.projectsmart.co.uk/it-project-management/the-curious-case-of-the-chaos-report-2009.php
https://www.projectsmart.co.uk/it-project-management/the-curious-case-of-the-chaos-report-2009.php
https://www.projectsmart.co.uk/it-project-management/the-curious-case-of-the-chaos-report-2009.php
https://www.projectsmart.co.uk/it-project-management/the-curious-case-of-the-chaos-report-2009.php
https://www.projectsmart.co.uk/it-project-management/the-curious-case-of-the-chaos-report-2009.php

Requirements

• Types:
• User requirements

• What tasks the user can do with the system

• Functional requirements (features)
• What behaviors the system does or supports

• Non-functional requirements (qualities)
• How well the system should do what it does

• E.g., response time, resource usage, availability

4

Requirements

• Types:
• External interfaces

• E.g., interfaces to other hardware and software, data sources and sinks, formats,
protocols

• Physical setting
• E.g., location, workspace, lighting, noise, temperature

• Developer constraint
• E.g., implementation technology, documentation

5

Requirements

• Types:
• Business requirements

• Why the system is needed

• Business constraint
• What the system or process must comply with

• E.g., corporate policy, industry standard, government regulation

6

Requirements

• Requirements should be:
• Correct

• Requirements properly represent user needs

• Complete
• All possible scenarios are described

• Consistent
• Requirements do not contradict each other

• Clear
• No ambiguities

• Realistic
• Can be achieved by “mere mortals”

7

Requirements

• Also desired:
• Traceable

• Can trace functionality and tests to the requirement being satisfied

• Verifiable
• Repeatable test(s) can be designed to show that the system fulfills the requirement

8

Verifiable Requirements

• Verifiable?
• “The system shall have a good user interface.”

9

Verifiable Requirements

• Verifiable?
• “The system shall respond to the user in under one second for most tasks.”

10

Verifiable Requirements

• Verifiable?
• “When the output state changes, it is logged in the event log.”

11

Verifiable Requirements

• Verifiable?
• “The system shall be free of defects.”

12

Requirements Activities

• Done iteratively:
• Requirements elicitation

• Discover user needs

• Requirements analysis
• Decide scope and priorities

• Study feasibility

• Requirements specification
• Detail the requirements in terms the users can understand

13

Users

• Who is the “user”?
• Primary

• End user

• With frequent hands-on use

• Secondary
• Manager of end users

• With occasional use, or via an assistant

• Tertiary
• Owner of the system

• Uses output, influences or makes funding decisions

14

Users

• Some characteristics to consider:
• Background

• Literacy and language

• Motivation to learn

• Domain knowledge

• Task familiarity

• Computer skills

• Attitude towards computers and technology

15

Users

• Some characteristics to consider:
• Perceptual, motor, and tactile abilities

• Seeing and hearing difficulties

• Fine motor skills with input devices

• Physical
• Height and strength (for kiosk design)

• Hand and finger size and strength (for mobile device design)

• Health, age, and gender

• Social
• Relationships with peers

• Culture

17

Users

• Kinds of use:
• Infrequent use/novice user

• Need wizards

• Need clear prompts, error handling

• Frequent use/expert user
• Need keyboard shortcuts

• Need customization, programmability

18

Users

• Some issues to consider:
• Users cannot always express what they want

• But they often know what they do not like

• Users may not know what is possible
• What is technically and economically feasible?

• Users stick to what they know already works, or have always done

• Users may fear job losses
• Leads to non-constructive participation

19

Users

• “Innovator’s dilemma”:
• Attributed by Clayton Christensen

• As the user base for an application grows, there is a tendency for developers
to focus on this increasingly expert (and vocal) group of users

• The system becomes more sophisticated

• Development becomes “optimized” for them

20

Users

21

• “Innovator’s dilemma”:
• Potential new users need “less”

• Experts don’t want their app “dumbed down”

• Competitor attracts the new users with a simpler “good enough” app

• Original app loses market share due to disruption from the low end

Understanding

• Tips:
• Manage expectations

• Be clear and honest about claims

• Avoid surprises, disappointments, hype

• Involve the user
• Build tangible prototypes to gain feedback

• More likely to forgive problems if they are involved

• Establish a glossary
• Terminology used in the application domain (not programming domain)

23

User Stories

24

Specifying Needs

• User story:
• Written description of what a user wants to achieve with the system

26

As a guest, I want to
reserve a hotel room.

Organized on index cards

As a conference planner, I
want to see meeting room
capacities.

Typical forms:
• As a «user role»,

I want «goal».
• As a «user role»,

I want «goal»,
so that «reason».

Defining User Stories

• Tips:
• Describe what not how

• Avoid technical details or choices of technologies, unless it is a development constraint

• Avoid epics for near-term needs
• Better to split up huge stories into more, smaller stories (but not too small)

27

Defining User Stories

• Tips:
• Prioritize user stories

• Discuss with the user what they find of most value, and stage development on that first

• Can attach an effort estimate to complete
• Normally sized to take days, not many weeks

• Use stories to plan development tasks
• Create work items in the iteration plan

28

“SMART Work Items”

• https://xp123.com/invest-in-good-stories-and-smart-tasks/

29

S Specific

M Measurable

A Achievable

R Relevant

T Time Boxed

https://xp123.com/invest-in-good-stories-and-smart-tasks/
https://xp123.com/invest-in-good-stories-and-smart-tasks/
https://xp123.com/invest-in-good-stories-and-smart-tasks/
https://xp123.com/invest-in-good-stories-and-smart-tasks/
https://xp123.com/invest-in-good-stories-and-smart-tasks/
https://xp123.com/invest-in-good-stories-and-smart-tasks/
https://xp123.com/invest-in-good-stories-and-smart-tasks/
https://xp123.com/invest-in-good-stories-and-smart-tasks/
https://xp123.com/invest-in-good-stories-and-smart-tasks/
https://xp123.com/invest-in-good-stories-and-smart-tasks/
https://xp123.com/invest-in-good-stories-and-smart-tasks/
https://xp123.com/invest-in-good-stories-and-smart-tasks/
https://xp123.com/invest-in-good-stories-and-smart-tasks/
https://xp123.com/invest-in-good-stories-and-smart-tasks/

“INVEST in Good Stories”

• https://xp123.com/invest-in-good-stories-and-smart-tasks/

30

I Independent

N Negotiable

V Valuable

E Estimable

S Small

T Testable

https://xp123.com/invest-in-good-stories-and-smart-tasks/
https://xp123.com/invest-in-good-stories-and-smart-tasks/
https://xp123.com/invest-in-good-stories-and-smart-tasks/
https://xp123.com/invest-in-good-stories-and-smart-tasks/
https://xp123.com/invest-in-good-stories-and-smart-tasks/
https://xp123.com/invest-in-good-stories-and-smart-tasks/
https://xp123.com/invest-in-good-stories-and-smart-tasks/
https://xp123.com/invest-in-good-stories-and-smart-tasks/
https://xp123.com/invest-in-good-stories-and-smart-tasks/
https://xp123.com/invest-in-good-stories-and-smart-tasks/
https://xp123.com/invest-in-good-stories-and-smart-tasks/
https://xp123.com/invest-in-good-stories-and-smart-tasks/
https://xp123.com/invest-in-good-stories-and-smart-tasks/
https://xp123.com/invest-in-good-stories-and-smart-tasks/

Testable User Stories

• Front of the card:

31

As a meal planner, I want to
see nutrition information for a
given amount of a given food.

Testable User Stories

• Back of the card:

• Link:
• https://ronjeffries.com/xprog/articles/expcardconversationconfirmation/

32

Acceptance tests

https://ronjeffries.com/xprog/articles/expcardconversationconfirmation/
https://ronjeffries.com/xprog/articles/expcardconversationconfirmation/

Use Cases

34

Identifying Tasks

• Study what tasks users do:
• What is the goal and context?

• What information is needed?

• What are the steps?

• Who does the user work with?

• Why is it done this way?

35

Identifying Tasks

• Scenario:
• An informal narrative

• Personal and concrete, but not particularly general

• Use the scenario to understand existing goals, task flow, and possible
irritants

36

Scenario

• Example:
• “I want to track the calories for a meal, so I consult the USDA Nutrient

database. I want to look up ‘Pacific salmon’ so I enter that as the keywords.
Item not found! So I enter ‘salmon’ and try again. That works, but I get 46
items, including salmonberries and even cloudberries. Why? I choose ‘fish,
salmon, sockeye, cooked, dry heat’, then figure 2.5 x 100 g units for my item,
and scan the table to see 422 kcal in the energy row.”

37

Specifying Tasks

• Use Cases:
• Capture the goal, conditions, and steps of a coherent interaction between

the actor(s) and the software system

• More general than a specific scenario

• Written from a “user” point-of-view

38

Defining Use Cases

• Stages:
• Identify the actors

• Consider different user roles and external systems

• Define use cases
• Include all cases of use

• Refine use cases
• Consider exceptional conditions and qualities

• Relate use cases
• Consider inclusion and extension dependencies

39

Identify the Actors

40

Search for
Nutrition Info

Update
Nutrition Info

Browse
Nutrition Info

Meal Planner

Administrator

Use cases,
not components

Boundary of the system

Actor

Use case diagram

Identify the Actors

• Actor generalization:

41

Meal Planner Administrator

User

Define/Refine Use Cases

• Example:

42

SearchForNutritionInfo

Meal Planner (primary)

Meal Planner finds nutrition information

Meal Planner chooses the Search option

Meal Planner knows food name and amount.

On success, nutrition information displayed.

…

Use Case Name

Participating Actors

Goal

Trigger

Precondition

Post-condition

Define/Refine Use Cases

• Example:

43

System prompts Meal Planner to enter keywords

Meal Planner submits keywords.

System lists matching foods, prompting for a
selection.

Meal Planner browses and selects a food.

System prompts for food weight in units of 100 g.

Meal Planner enters food units.

System presents nutrition data for the amount of
food.

…

Basic Flow 1

2

3

4

5

6

7

User point of view

Avoid implementation specifics

Define/Refine Use Cases

• Example:

44

If there are no matching foods

System displays an error

System returns to step 1

If given food units is non-numeric, use 0 and proceed

Exceptions 3

3.1

3.2

7

Define/Refine Use Cases

• Example:

45

System responds in under 2 s for list of matching
foods and for nutrition data on a specific food.

Use USDA nutrition data.

Qualities

Constraints

Includes

Extends

Related Artifacts

Notes

Open Issues

Relate Use Cases

• Inclusion:
• A use case may include another use case (for necessary, shared behavior)

48

Pay Bill
Online

Get Balance
Online

Login

«include»

«include»

Relate Use Cases

• Extension:
• A use case may be extended by another use case (for optional or exceptional

behavior)

49

Login

Reset
Password

«extend»

Relate Use Cases

• Use case generalization:
• A use case may be a specialization of a more general use case

50

Make Deposit
Make

Withdrawal

Do ATM
Transaction

Augmenting Requirements

51

Augmenting Requirements

52

letter

letter

digit

identifier <identifier> ::=
 <letter> { <letter> | <digit> }

• Can add other descriptions, for example:
• Use cases to user stories

• Data schemas

• Sample input and output

• User interface mockups and storyboards

• Grammars (language syntactic/lexical structure)

State Models

• Modeling behavior:
• Used in formally modeling the behavior of a specific object in response to

external events

53

UML State Diagram

• Modeling behavior:
• States in which something can be in

• A situation represented by attribute values

• Directed transitions between states
• Triggered by events, input, time, messages, etc.

54

Off On

Initial state State

Transition

start

stop

Start / toggle := true

Stop / toggle := false

UML State Diagram

55

Requested

Reserved

Checked In

Waiting

Canceled

Room unavailable /
put on waiting listRoom available /

decrement
room count

Room available /
decrement room count

Client gives up /
remove from list

Client cancels /
increment room count

Client
checks in /

Client checks out /
increment room count

Trigger /
effect

Archived

A final state

UML State Diagram

• States:

56

State name State name

Activities

State name

Variables

Activities

• Transitions:

• If in a current state,
and trigger occurs,
and guard constraint (if any) is true …

• Then perform state exit actions (if any),
perform corresponding transition effect (if any),
perform new state entry actions (if any);

• Otherwise, stay at current state.

UML State Diagram

57

trigger [guard] / effect General form of transition label

UML State Diagram

• Activities in states:

58

Timing

do / countdown

Ready

entry / beep

Timeout

entry / action perform action when entering state

do / action perform action while in state

exit / action perform action when exiting state

UML State Diagram

• Activities in states:

59

SettingDay

entry /
 start day blink
button1 /
 increment day
exit /
 stop day blink

SettingMonth

entry /
 start month blink
button1 /
 increment month
exit /
 stop month blink

button2

trigger / action when trigger occurs, perform action

button3

Also called an
internal transition

Room Planner

• Canvas:
• To place and move items

• Mouse events:
• Click

• Press/drag/release

• Item type menu:
• Choices of fixtures and furniture

60

Room Planner

• Placing an item:
• User clicks on canvas outside any item

• System shows the item type menu

• User chooses an item type from the menu
• System hides the item type menu

• User clicks on the canvas
• System draws item of the chosen type at the mouse location

61

Room Planner

• Moving an item:
• User presses inside an item

• System highlights item

• User drags item
• System shows moving item

• User releases mouse
• System puts item at new location

• System removes item highlighting

62

Room Planner

• States:
• Waiting

• Nothing happening

• Choosing
• Choosing item type from menu

• Placing
• Placing chosen shape

• Moving
• Moving item to new position

63

Moving

64

current
(x, y)

erase current;
update current.x;
update current.y;
draw current

Waiting

Choosing

Placing

click
[outside any item] /
show menu

choose
item type /
hide menu

click /
draw item at
mouse location

press
[inside item F] /
current := F;
highlight current

release /
unhighlight
current

drag (x, y)

UML State Diagram

• Tips:
• Check for completeness

• States reachable?

• Missing transitions?

• Events not considered?

• Unforeseen situations?

• Check for dangerous situations
• E.g., exiting without having saved edits

65

UML State Diagram

• Tips:
• Check for consistency

• Similar interactions have similar effects?

• Effects are visible and give good feedback?

• Aid the user
• Is undo appropriate, in each state?

• Is cancel or escape appropriate?

• Is invoking help appropriate?

66

More Information

• Books:
• The Essence of Object-Oriented Programming with Java and UML

• B. Wampler

• Addison-Wesley, 2002

• UML Distilled
• M. Fowler

• Addison-Wesley, 2003

• User Stories Applied
• M. Cohn

• Addison-Wesley, 2004

67

More Information

• Books:
• More About Software Requirements

• K. Wiegers

• Microsoft, 2006

• Software Engineering: Theory and Practice
• S.L. Pfleeger

• Prentice-Hall, 2009

68

More Information

• Links:
• Effective User Stories for Agile Requirements

• https://www.mountaingoatsoftware.com/presentations/introduction-to-user-stories

69

https://www.mountaingoatsoftware.com/presentations/introduction-to-user-stories
https://www.mountaingoatsoftware.com/presentations/introduction-to-user-stories
https://www.mountaingoatsoftware.com/presentations/introduction-to-user-stories
https://www.mountaingoatsoftware.com/presentations/introduction-to-user-stories
https://www.mountaingoatsoftware.com/presentations/introduction-to-user-stories
https://www.mountaingoatsoftware.com/presentations/introduction-to-user-stories
https://www.mountaingoatsoftware.com/presentations/introduction-to-user-stories
https://www.mountaingoatsoftware.com/presentations/introduction-to-user-stories

	Slide 1: Requirements
	Slide 3: Importance of Requirements
	Slide 4: Requirements
	Slide 5: Requirements
	Slide 6: Requirements
	Slide 7: Requirements
	Slide 8: Requirements
	Slide 9: Verifiable Requirements
	Slide 10: Verifiable Requirements
	Slide 11: Verifiable Requirements
	Slide 12: Verifiable Requirements
	Slide 13: Requirements Activities
	Slide 14: Users
	Slide 15: Users
	Slide 17: Users
	Slide 18: Users
	Slide 19: Users
	Slide 20: Users
	Slide 21: Users
	Slide 23: Understanding
	Slide 24: User Stories
	Slide 26: Specifying Needs
	Slide 27: Defining User Stories
	Slide 28: Defining User Stories
	Slide 29: “SMART Work Items”
	Slide 30: “INVEST in Good Stories”
	Slide 31: Testable User Stories
	Slide 32: Testable User Stories
	Slide 34: Use Cases
	Slide 35: Identifying Tasks
	Slide 36: Identifying Tasks
	Slide 37: Scenario
	Slide 38: Specifying Tasks
	Slide 39: Defining Use Cases
	Slide 40: Identify the Actors
	Slide 41: Identify the Actors
	Slide 42: Define/Refine Use Cases
	Slide 43: Define/Refine Use Cases
	Slide 44: Define/Refine Use Cases
	Slide 45: Define/Refine Use Cases
	Slide 48: Relate Use Cases
	Slide 49: Relate Use Cases
	Slide 50: Relate Use Cases
	Slide 51: Augmenting Requirements
	Slide 52: Augmenting Requirements
	Slide 53: State Models
	Slide 54: UML State Diagram
	Slide 55: UML State Diagram
	Slide 56: UML State Diagram
	Slide 57: UML State Diagram
	Slide 58: UML State Diagram
	Slide 59: UML State Diagram
	Slide 60: Room Planner
	Slide 61: Room Planner
	Slide 62: Room Planner
	Slide 63: Room Planner
	Slide 64
	Slide 65: UML State Diagram
	Slide 66: UML State Diagram
	Slide 67: More Information
	Slide 68: More Information
	Slide 69: More Information

