
REQUIREMENTS

Dr. Hazel Campbell
Slides originally by Dr. Ken Wong
Department of Computing Science
University of Alberta

Images reproduced in these slides have been included under section 29 of the
Copyright Act, as fair dealing for research, private study, criticism, or review. Further
distribution or uses may infringe copyright.

2

Importance of Requirements
 Link:

◦ http://www.projectsmart.co.uk/docs/chaos-rep
ort.pdf

Reason for Project Failure % of Responses

Incomplete requirements 13.1

Lack of user involvement 12.4

Lack of resources 10.6

Unrealistic expectations 9.9

Lack of management support 9.3

Changing requirements 8.7

Lack of planning 8.1

System no longer needed 7.5

http://www.projectsmart.co.uk/docs/chaos-report.pdf
http://www.projectsmart.co.uk/docs/chaos-report.pdf
http://www.projectsmart.co.uk/docs/chaos-report.pdf
http://www.projectsmart.co.uk/docs/chaos-report.pdf
http://www.projectsmart.co.uk/docs/chaos-report.pdf

3

Requirements
 Types:

◦ user requirements
 what tasks the user can do with the system

◦ functional requirements (features)
 what behaviors the system does or supports

◦ non-functional requirements (qualities)
 how well the system should do what it does
 e.g., response time, resource usage, availability

4

Requirements
 Types:

◦ external interfaces
 e.g., interfaces to other hardware and software,

data sources and sinks, formats, protocols

◦ physical setting
 e.g., location, workspace, lighting, noise, temperature

◦ developer constraint
 e.g., implementation technology, documentation

5

Requirements
 Types:

◦ business requirements
 why the system is needed

◦ business constraint
 what the system or process must comply with
 e.g., corporate policy, industry standard,

government regulation

6

Requirements
 Requirements should be:

◦ correct
 requirements properly represent user needs

◦ complete
 all possible scenarios are described

◦ consistent
 requirements do not contradict each other

◦ clear
 no ambiguities

◦ realistic
 can be achieved by “mere mortals”

7

Requirements
 Also desired:

◦ traceable
 can trace functionality and tests to the requirement

being satisfied

◦ verifiable
 repeatable test(s) can be designed to show that the

system fulfills the requirement

8

Verifiable Requirements
 Verifiable?

◦ “The system shall have a good user interface.”

9

Verifiable Requirements
 Verifiable?

◦ “The system shall respond to the user in
under one second for most tasks.”

10

Verifiable Requirements
 Verifiable?

◦ “When the output state changes, it is logged
in the event log.”

11

Verifiable Requirements
 Verifiable?

◦ “The system shall be free of defects.”

12

Requirements Activities
 Done iteratively:

◦ requirements elicitation
 discover user needs

◦ requirements analysis
 decide scope and priorities
 study feasibility

◦ requirements specification
 detail the requirements in terms the users can

understand

13

Users
 Who is the “user”?

◦ primary
 end user
 with frequent hands-on use

◦ secondary
 manager of end users
 with occasional use, or via an assistant

◦ tertiary
 owner of the system
 uses output, influences or makes funding decisions

14

Users
 Some characteristics to consider:

◦ background
 literacy and language
 motivation to learn

 domain knowledge
 task familiarity

 computer skills
 attitude to computers and technology

15

Users
 Some characteristics to consider:

◦ perceptual, motor, and tactile abilities
 seeing and hearing difficulties
 fine motor skills with input devices

◦ physical
 height and strength (for kiosk design)
 hand/finger size (for mobile device design)
 health, age, and gender

◦ social
 relationships with peers
 culture

16

Users
 Kinds of use:

◦ infrequent use / novice user
 need wizards
 need clear prompts, error handling

◦ frequent use / expert user
 need keyboard shortcuts
 need customization, programmability

17

Users
 Some issues to consider:

◦ users cannot always express what they want
 but they often know what they do not like

◦ users may not know what is possible
 what is technically and economically feasible?

◦ users stick to what they …
 know already works, or have always done

◦ users may fear job losses
 leads to non-constructive participation

18

Users
 “Innovator’s dilemma”:

◦ [Clayton Christensen]

◦ as the user base for an application grows,
there is a tendency for developers to focus on
this increasingly expert (and vocal) group of
users

◦ the system becomes more sophisticated
◦ development becomes “optimized” for them

19

Users
 “Innovator’s dilemma”:

◦ potential new users need “less”
◦ experts don’t want to lose advanced features

◦ competitor attracts the new users with a
simpler “good enough” app

◦ original app loses market share due to
disruption from the low end

20

Understanding
 Tips:

◦ manage expectations
 be clear and honest about claims
 avoid surprises, disappointments, hype

◦ involve the user
 build tangible prototypes to gain feedback
 more likely to forgive problems if they are involved

◦ establish a glossary
 terminology used in the application domain

(not programming domain)

21

USER STORIES

22

Specifying Needs
 Old (waterfall) method:

 Agile method: less writing, more talking

Write down all the
requirements.

Users get what
they want.

Users only get what
was written.

23

Specifying Needs
 User story:

◦ written description of what a user wants to
achieve with the system

As a guest, I want to
reserve a hotel room.

on index cards

As a guest, I want to see

a list of room amenities.

As a conference planner,
I want to see meeting
room capacities.

Typical forms:

As a «user role»,
I want «goal».

As a «user role»,
I want «goal»,
so that «reason».

24

Defining User Stories
 Tips:

◦ describe what not how
 avoid technical details or choices of technologies,

unless it is a development constraint

◦ avoid epics for near-term needs
 better to split up huge stories into more, smaller

stories (but not too small)

25

Defining User Stories
 Tips:

◦ prioritize user stories
 discuss with the user what they find of most value,

and stage development on that first

◦ can attach an effort estimate to complete
 normally sized to take days, not many weeks

◦ use stories to plan development tasks
 create work items in the iteration plan

26

“SMART Work Items”

 Link:
◦ http://xp123.com/articles/invest-in-good-storie

s-and-smart-tasks/

S Specific

M Measurable

A Achievable

R Relevant

T Time Boxed

http://xp123.com/articles/invest-in-good-stories-and-smart-tasks/
http://xp123.com/articles/invest-in-good-stories-and-smart-tasks/

27

“INVEST in Good Stories”

 Link:
◦ http://xp123.com/articles/invest-in-good-storie

s-and-smart-tasks/

I Independent

N Negotiable

V Valuable

E Estimable

S Small

T Testable

http://xp123.com/articles/invest-in-good-stories-and-smart-tasks/
http://xp123.com/articles/invest-in-good-stories-and-smart-tasks/

28

Testable User Stories
 Front of the card:

As a meal planner, I
want to see nutrition
information for a given
amount of a given food.

29

Testable User Stories
 Back of the card:

 Link:
◦ http://xprogramming.com/articles/expcardcon

versationconfirmation/

Try it for 250 g of baked Pacific salmon.Try it with a missing food name.
Try it with a non-numeric amount.

acceptance tests

http://xprogramming.com/articles/expcardconversationconfirmation/
http://xprogramming.com/articles/expcardconversationconfirmation/
http://xprogramming.com/articles/expcardconversationconfirmation/
http://xprogramming.com/articles/expcardconversationconfirmation/
http://xprogramming.com/articles/expcardconversationconfirmation/
http://xprogramming.com/articles/expcardconversationconfirmation/

30

USE CASES

31

Identifying Tasks
 Study what tasks users do:

◦ what is the goal and context?
◦ what information is needed?
◦ what are the steps?
◦ who does the user work with?
◦ why is it done this way?

32

Identifying Tasks
 Scenario:

◦ an informal narrative
◦ personal and concrete, but not particularly

general

◦ use the scenario to understand existing goals,
task flow, and possible irritants

33

Scenario
 Example:

◦ “I want to track the calories for a meal, so I
consult the USDA Nutrient database. I want
to look up ‘Pacific salmon’ so I enter that as
the keywords. Item not found! So I enter
‘salmon’ and try again. That works, but I get 46
items, including salmonberries and even
cloudberries. Why? I choose ‘fish, salmon,
sockeye, cooked, dry heat’, then figure 2.5 x
100 g units for my item, and scan the table to
see 422 kcal in the energy row.”

34

Specifying Tasks
 Use Cases:

◦ capture the goal, conditions, and steps of a
coherent interaction between the actor(s)
and the software system

◦ more general than a specific scenario

◦ written from a “user” point-of-view

35

Defining Use Cases
 Stages:

◦ identify the actors
 consider different user roles and external systems

◦ define use cases
 include all cases of use

◦ refine use cases
 consider exceptional conditions and qualities

◦ relate use cases
 consider inclusion and extension dependencies

36

Identify the Actors

Search for
Nutrition Info

Update
Nutrition Info

Browse
Nutrition Info

Meal
Planner

Administrator

use cases,
not components

boundary of the system

actor

use case diagram

37

Identify the Actors
 Actor generalization:

Meal
Planner

Administrator

User

38

Define/Refine Use Cases
 Example:

SearchForNutritionInfo

Meal Planner (primary)

Meal Planner finds nutrition information

Meal Planner chooses the Search option

Meal Planner knows food name and amount.

On success, nutrition information displayed.

…

Use Case Name

Participating Actors

Goal

Trigger

Precondition

Postcondition

39

Define/Refine Use Cases
 Example:

System prompts Meal Planner to enter keywords.

Meal Planner submits keywords.

System lists matching foods, prompting for a selection.

Meal Planner browses and selects a food.

System prompts for food weight in units of 100 g.

Meal Planner enters food units.

System presents nutrition data for the amount of
food.

…

Basic Flow 1

2

3

4

5

6

7

user point of view

avoid implementation specifics

40

Define/Refine Use Cases
 Example:

If there are no matching foods

System displays an error

System returns to step 1

If given food units is non-numeric, use 0 and proceed

Exceptions 3

3.1

3.2

7

41

Define/Refine Use Cases
 Example:

System responds in under 2 s for list of matching
foods and for nutrition data on a specific food.

Use USDA nutrition data.

Qualities

Constraints

Includes

Extends

Related Artifacts

Notes

Open Issues

42

Essential Use Case
SearchForNutritionInfo

User Intention (Meal Planner) System Responsibility

Initiate search.

Request keywords.

Submit keywords.

List matching foods to select.

Select a food.

Request food units.

Enter food units.

Present nutrition data.

44

Relate Use Cases
 Inclusion:

◦ a use case may include another use case
(for necessary, shared behavior)

Pay Bill
Online

Get Balance
Online

Login

«include»

«include»

45

Relate Use Cases
 Extension:

◦ a use case may be extended by another use
case (for optional or exceptional behavior)

Login

Reset
Password

«extend»

46

Relate Use Cases
 Use case generalization:

◦ a use case may be a specialization of a more
general use case

Make Deposit Make
Withdrawal

Do ATM
Transaction

47

AUGMENTING
REQUIREMENTS

48

Augmenting Requirements
 Can add other descriptions, for example:

◦ use cases to user stories
◦ data schemas
◦ sample input and output
◦ user interface mockups and storyboards
◦ grammars (language syntactic/lexical structure)

letter

letter

digit

identifier <identifier> ::=
<letter> { <letter> | <digit> }

49

State Models
 Modeling behavior:

◦ used in formally modeling the behavior of a
specific object in response to external events

50

UML State Diagram
 Modeling behavior:

◦ states in which something can be in
 a situation represented by attribute values

◦ directed transitions between states
 triggered by events, input, time, messages, etc.

Off On

initial state state

transition

start

stop

start / toggle := true

stop / toggle := false

51

UML State Diagram

Requested

Reserved

Checked In

Waiting

Canceled

room unavailable /
put on waiting listroom available /

decrement
room count

room available /
decrement room count

client gives up /
remove from list

client cancels /
increment room count

client
checks in /

client checks out /
increment room counttrigger /

effect

Archived

a final state

52

UML State Diagram
 States:

state name state name

activities

state name

variables

activities

53

UML State Diagram
 Transitions:

◦ if in a current state,
and trigger occurs,
and guard constraint (if any) is true …

◦ then perform state exit actions (if any),
perform corresponding transition effect (if any),
perform new state entry actions (if any);

◦ otherwise, stay at current state

trigger [guard] / effect

general form of transition label

54

UML State Diagram
 Activities in states:

Timing

do / countdown

Ready

entry / beep

timeout

entry / action perform action when entering state

do / action perform action while in state

exit / action perform action when exiting state

55

UML State Diagram
 Activities in states:

SettingDay

entry /
 start day blink
button1 /
 increment day
exit /
 stop day blink

SettingMonth

entry /
 start month blink
button1 /
 increment month
exit /
 stop month blink

button2

trigger / action when trigger occurs, perform action

button3

also called an
internal transition

56

Room Planner
 Canvas:

◦ to place and move items

 Mouse events:
◦ click
◦ press/drag/release

 Item type menu:
◦ choices of fixtures and furniture

57

Room Planner
 Placing an item:

◦ user clicks on canvas outside any item
 system shows the item type menu

◦ user chooses an item type from the menu
 system hides the item type menu

◦ user clicks on the canvas
 system draws item of the chosen type

at the mouse location

58

Room Planner
 Moving an item:

◦ user presses inside an item
 system highlights item

◦ user drags item
 system shows moving item

◦ user releases mouse
 system puts item at new location
 system removes item highlighting

59

Room Planner
 States:

◦ waiting
 nothing happening

◦ choosing
 choosing item type from menu

◦ placing
 placing chosen shape

◦ moving
 moving item to new position

60

Moving

current
(x, y)

erase current;
update current.x;
update current.y;
draw current

Waiting

Choosing

Placing

click
[outside any item] /
show menu

choose
item type /
hide menu

click /
draw item at
mouse location

press
[inside item F] /
current := F;
highlight current

release /
unhighlight
current

drag (x, y)

61

UML State Diagram
 Tips:

◦ check for completeness
 states reachable?
 missing transitions?
 events not considered?
 unforeseen situations?

◦ check for dangerous situations
 e.g., exiting without having saved edits

62

UML State Diagram
 Tips:

◦ check for consistency
 similar interactions have similar effects?
 effects are visible and give good feedback?

◦ aid the user
 is undo appropriate, in a given state?
 is cancel or escape appropriate?
 is invoking help appropriate?

63

More Information
 Books:

◦ The Essence of Object-Oriented
Programming with Java and UML
 B. Wampler
 Addison-Wesley, 2002

◦ UML Distilled
 M. Fowler
 Addison-Wesley, 2003

64

More Information
 Books:

◦ User Stories Applied
 M. Cohn
 Addison-Wesley, 2004

◦ More About Software Requirements
 K. Wiegers
 Microsoft, 2006

65

More Information
 Books:

◦ Software Engineering: Theory and Practice
 S.L. Pfleeger
 Prentice-Hall, 2009

66

More Information
 Links:

◦ Use Cases, Ten Years Later
 http://alistair.cockburn.us/Use+cases%2c+ten+years

+later

◦ Effective User Stories for Agile Requirements
 http://www.mountaingoatsoftware.com/presentatio

ns/52-effective-user-stories-for-agile-requirements

http://alistair.cockburn.us/Use+cases,+ten+years+later
http://alistair.cockburn.us/Use+cases,+ten+years+later
http://www.mountaingoatsoftware.com/presentations/52-effective-user-stories-for-agile-requirements
http://www.mountaingoatsoftware.com/presentations/52-effective-user-stories-for-agile-requirements
http://www.mountaingoatsoftware.com/presentations/52-effective-user-stories-for-agile-requirements
http://www.mountaingoatsoftware.com/presentations/52-effective-user-stories-for-agile-requirements

	Requirements
	Importance of Requirements
	Requirements (2)
	Requirements (3)
	Requirements (4)
	Requirements (5)
	Requirements (6)
	Verifiable Requirements
	Verifiable Requirements (2)
	Verifiable Requirements (3)
	Verifiable Requirements (4)
	Requirements Activities
	Users
	Users (2)
	Users (3)
	Users (4)
	Users (5)
	Users (6)
	Users (7)
	Understanding
	User Stories
	Specifying Needs
	Specifying Needs (2)
	Defining User Stories
	Defining User Stories (2)
	“SMART Work Items”
	“INVEST in Good Stories”
	Testable User Stories
	Testable User Stories (2)
	Use CASES
	Identifying Tasks
	Identifying Tasks (2)
	Scenario
	Specifying Tasks
	Defining Use Cases
	Identify the Actors
	Identify the Actors (2)
	Define/Refine Use Cases
	Define/Refine Use Cases (2)
	Define/Refine Use Cases (3)
	Define/Refine Use Cases (4)
	Essential Use Case
	Relate Use Cases
	Relate Use Cases (2)
	Relate Use Cases (3)
	Augmenting Requirements
	Augmenting Requirements (2)
	State Models
	UML State Diagram
	UML State Diagram (2)
	UML State Diagram (3)
	UML State Diagram (4)
	UML State Diagram (5)
	UML State Diagram (6)
	Room Planner
	Room Planner (2)
	Room Planner (3)
	Room Planner (4)
	Slide 60
	UML State Diagram (7)
	UML State Diagram (8)
	More Information
	More Information (2)
	More Information (3)
	More Information (4)

