
Testing

Abram Hindle
Department of Computing Science
University of Alberta

abram.hindle@ualberta.ca
http://softwareprocess.es/

mailto:abram.hindle@ualberta.ca
http://softwareprocess.es/

2

Slides originally by Ken Wong

Images reproduced in these slides have been included under
section 29 of the Copyright Act, as fair dealing for research,
private study, criticism, or review. Further distribution or
uses may infringe copyright.

Goal
Does program P obey
specification S?

◦ what is P?
◦ what is S?

3

Approaches
Reasoning about the state
model for P:
◦ typically a huge number of states
◦ every practical technique must
be inaccurate

◦ could abstract states
◦ could sample states
◦ or both

4

Approaches
Abstraction:

◦ often used in static software
analysis techniques
 e.g., model checking P for some

specific S

◦ techniques often pessimistically
inaccurate
 may report P is faulty when P is

correct

5

Approaches
Sampling:

◦ often used in dynamic analysis
techniques
 e.g., testing, profiling

◦ techniques often optimistically
inaccurate
 may report P is correct when P is faulty

 testing drives P through a sampling of states,
but the samples may not generalize to actual
situations

6

State-Based Testing
Steps:

◦ set up software into a known state
 e.g., initialize variables

◦ trigger transitions to cause state
changes
 e.g., call methods to change variables

◦ verify the actual arrived state is
expected
 e.g., set if actual values in variables meet

expectations

7

Software Defects
Some terms:

◦ human errors can lead to faults in work
products, which may cause failures
when running the software

◦ can try to find faults through testing,
reviews, proof, model checking, code
analysis, etc.

◦ some avoid the term bug, since it
implies something wandered into the
code

8

Failure
AT&T failure (1990):

◦ 114 switching nodes of their long
distance system crashed

◦ the outage lasted for 9 h,
70 million calls went uncompleted

Reason:
◦ if a node crashes, it tells neighboring
nodes to reroute traffic around it

◦ a bug in handling this message caused
the receiving node to also crash, etc.

9

Fault in Code
Root cause:

do {

 switch (…) {

 case …:

 if (…) {

 …

 break;

 } else {

 …

 }

 …
 }

} while (…);

1
0

after expensive testing phase,
a small change was made
without again retesting

Examples of Defects
Actual behavior differing from expected:

◦ algorithmic
 code logic does not produce the proper output

◦ overload
 data structure unexpectedly filled to capacity

◦ performance
 violates service level agreement

◦ accuracy
 calculated result not to the desired level of

accuracy
◦ timing

 race condition in coordinating concurrent
processes

1
1

Why Test?
Goals:

◦ verification
 check that requirements are satisfied

◦ not only to confirm normal behavior
 find problems to refute that the program is

correct
◦ establish due diligence

 evidence in case of product liability
litigation

◦ avoid regression
 prevent previous problems from

reoccurring

1
2

Regression Testing
Goal:

◦ to avoid breaking things that should
work
 collect, reuse, and re-run automated test

cases

◦ do regression test after a change or
fix
 re-run tests to check whether previously

passing tests of the system now fail
 e.g., old defect somehow became unfixed

1
3

Limits of Testing
Issues:

◦ a program cannot be tested completely
 too many inputs and path combinations to

cover
◦ testing cannot find all defects

 cannot show their absence, just their
presence

◦ challenging
 testing may be expensive and frustrating
 test code itself could add its own defects

1
4

Black Box Testing
Example test cases:

◦ be systematic about what to
test,
not knowing the internal code

1
5

Addends Sum Description (also check commutative)

2 3 5 something simple

99 99 198 large positive pair

99 -14 85 large positive plus negative

99 16 115 large positive plus positive

-99 -99 -198 large negative pair

-99 -14 -113 large negative plus negative

-99 16 -83 large negative plus positive

-99 99 0 large positive plus large negative

9 9 18 largest single digit positive pair

…

Black Box Testing
Tips:

◦ avoid redundant tests
 too easy to keep adding meaningless

extra tests

◦ determine equivalence classes of
tests

1
6

Black Box Testing
Equivalence classes:

◦ each test inside an equivalence
class checks the “same thing”

◦ if a test inside the class will catch a
defect, the other tests probably
also will

◦ if a test inside the class will not
catch a defect, the other tests
probably also will not

◦ keep only a few tests in each class,
as representatives

1
7

1
8

depiction of
equivalence classes

partitioning of test cases

Black Box Testing
Example test cases:

◦ guessing at internal algorithm or
representation

1
9

Addends Sum Description (also check commutative)

0 0 0 all zero special case

0 23 23 zero plus positive

-78 0 -78 negative plus zero

127 127 254 max signed bytes

-128 127 -1 min and max signed bytes

-128 -128 -256 min signed bytes

2147483647 2147483647 max signed integers

-2147483648 2147483647 -1 min and max signed integers

-2147483648 -2147483648 min signed integers

…

Black Box Testing
Example test cases:

◦ data input from fields in user
interface

2
0

Addends Sum Description (also check commutative)

4/3 2 expression

$2 $2 currency symbols

+5 3 plus sign

(9) 9 parentheses around negatives

l 1 lower case letter l

O 0 upper case letter O

<tab> <tab> no input

1.2 5 decimal

A b invalid characters

…

Black Box Testing
Example test cases:

◦ and even more user interface
explorations
 editing with delete, backspace,

cursor keys, etc.
 using F1, escape, and control

characters
 vary timing of data entry

2
1

Defect Tracking
Typically, for each reported defect:

◦ identification
 ID
 program and version

◦ classification
 kind of defect (e.g., code or documentation)
 severity (e.g., minor, major, critical)

◦ description
 issue
 how to reproduce
 suggested fix (optional)

2
2

Defect Tracking
For each reported defect:

◦ progress
 status (open or closed)
 resolution (e.g., pending, fixed,

irreproducible, deferred, as designed,
unfixable)

◦ involved person
 reported by and when
 assigned to and when
 resolved by and when
 verified by and when

2
3

Testing Strategies
Big-bang strategy:

◦ test thoroughly only after the
whole system is put together

◦ pro?
 “project almost finished, only

testing left”
◦ cons

 hard to pinpoint the cause of a
failure

2
4

Testing Strategies
Top-down incremental strategy:

◦ implement/test the highest-level
modules first
 provide stubs for lower-level

functionality not yet implemented
 higher-level modules are the test drivers

Bottom-up incremental strategy:
◦ implement/test the lowest-level
modules first
 need to write test drivers

2
5

Testing Techniques
Creating good tests:

◦ test every error message
 error-handling code tends to be

weaker

◦ test under other configurations
 programmers are biased to their

own setup

2
6

Design for Testing

2
7

Good Software Design
Want software to be flexible:

◦ easy to change to respond to new
needs

◦ easy to understand
◦ easy to extend, without exploding
complexity

Want software to be testable:
◦ easy to construct the units
◦ easy to set up units into desired state
◦ easy to drive code and witness effects

2
8

Example Bad Design 1
 /**

 * Process photo album requests,
 * parse user preferences,
 * apply image transformations,
 * assemble images into albums,
 * deliver results to users
 */

public class PhotoAlbumServer {

 … // lots of code

}

2
9

Example Bad Design 1
Poor flexibility:

◦ difficult to extract and reuse parts
◦ complex to add new features
◦ instance variables are “global”

Poor testability:
◦ only end-to-end testing possible
◦ need golden results files for every
combination of preference settings
and image transformations

3
0

Improved Design 1
Use separation of concerns:

◦ RequestHandler class
◦ UserPreferencesReader class
◦ UserPreferencesParser cass
◦ ImageEffect class
◦ ImageTransformer class
◦ …

3
1

Improved Design 1
Better flexibility:

◦ uses object-oriented design
◦ easier to understand smaller,
separate units

Better testability:
◦ more focused tests of each unit
◦ test fixtures easier to provide for
each unit

◦ easier to check results

3
2

Forming Dependencies
 public class ExampleService {

 private DataSource theDataSource;
 …

 public ExampleService(…) {
 theDataSource = new DataSource(…);
 …
 }

 public void doService() {
 …
 … = theDataSource.getInfo();
 …
 }
 …
}

3
3

ExampleService DataSource

one approach is that the class
makes what it depends on

“Dependency Injection”
 public class ExampleService {

 private DataSource theDataSource;
 …

 public ExampleService(
 DataSource aDataSource) {

 theDataSource = aDataSource;
 …
 }

 public void doService() {
 …
 … = theDataSource.getInfo();
 …
 }
 …
}

3
4

alternatively,
construct what this
class depends on
outside the class

System Assembly
3
5

KeyPad

QualcommGSMChipset FractusQuadBandAntenna

GSMRadio

CellPhone

System Assembly without DI
 public class CellPhone {

 …
 public CellPhone() {
 radio = new GSMRadio();
 inputDevice = new KeyPad();
 …
 }
}

 public class GSMRadio {
 …
 public GSMRadio() {
 chipset = new QualcommGSMChipset();
 antenna = new FractusQuadBandAntenna();
 }
}

 CellPhone phone = new CellPhone();
// fully assembled

3
6

System Assembly without DI
Poor flexibility:

◦ difficult to change and plug in parts
 for different radio, different input device, etc.

Poor testability:
◦ can’t supply test versions of parts

 stuck with given parts
◦ entire aggregate is constructed

 could be expensive

3
7

System Assembly with DI
 public class CellPhone {

 …
 public CellPhone(Radio radio,
 InputDevice inputDevice) {

 this.radio = radio;
 this.inputDevice = inputDevice;
 }
 …
}

 public class GSMRadio {
 …
 public GSMRadio(Chipset chipset,
 Antenna antenna) {

 this.chipset = chipset;
 this.antenna = antenna;
 }
}

3
8

System Assembly with DI
 // in some high-level class

CellPhone phone = new CellPhone(
 new GSMRadio(
 new QualcommGSMChipset(),
 new FractusQuadBandAntenna()
),
 new KeyPad()
);

3
9

separates out
“dependency resolution”
from the constituent
classes

AntennaChipset

InputDevice

System Assembly with DI
4
0

CellPhone

Radio

e.g., GSMRadio
extends Radio

e.g., KeyPad
extends InputDevice

e.g., QualcommGSMChipset
extends Chipset

e.g., FractusQuadBandAntenna
extends Antenna

could have other subclasses beyond these examples

System Assembly with DI
4
1

KeyPad

QualcommGSMChipset FractusQuadBandAntenna

GSMRadio

CellPhone

the bottom-up assembly process instantiates
the children and inserts them into the parents

Example Bad Design 2
 public class User {

 private Preferences prefs;

 public User(File prefFile) {
 prefs = parseFile(prefFile);
 …
 }
 public void doSomething() {
 … // use prefs
 }
 …
 private Preferences parseFile(File prefFile) {
 …
 aPrefs = new Preferences(…);
 … // setup prefs
 return aPrefs;
 }
}

4
2

Example Bad Design 2
Poor flexibility:

◦ changing preferences requires
changing User
 file format changes

◦ difficult to reuse User
 embedded preference file reading and

parsing

Poor testability:
◦ tests that deal with files are slow
◦ need test file for each preference
combination

4
3

Improved Design 2
 class User {

 private Preferences prefs;

 public User(Preferences prefs) {
 this.prefs = prefs;
 …
 }
 public void doSomething() {
 … // use prefs
 }
 …
}

4
4

dependency
injection

Improved Design 2
Better flexibility:

◦ no change to User if file format
changes

◦ preferences not limited to be
made from files

Better testability:
◦ can run fast

 pass in mock or fake Preferences
object

4
5

“Mock Object”
 public class UserTest {

 …
 public void testdoSomething() {

 // MockPreferences extends Preferences,
 // but is overridden with canned settings
 // (no test preference file needed)

 MockPreferences mockPrefs =
 new MockPreferences();

 User aUser = new User(mockPrefs);

 aUser.doSomething();
 …

 mockPrefs.AssertNoChange();
 }
}

4
6

Example Bad Design 3
Situation:

◦ many pieces of information are
needed by classes throughout
the system

◦ but each class needs just one or
a few items

◦ how to provide this information
to the consumers?

4
7

Example Bad Design 3
Typical approaches:

◦ consumers get the data they
need …

◦ make the data global,
◦ pass around a context object, or
◦ put the data in widely known and
used classes

4
8

Example Bad Design 3
 public class Account {

 …
 public Account(User user) {
 this.country =
user.getPreferences().getLocation().getCountry();
 …
 }
 …
}

4
9

Example Bad Design 3
Poor flexibility:

◦ method parameters do not show
what the method really needs

◦ code “locks in” the structure it
walks

Poor testability:
◦ test needs to recreate this
structure …

5
0

Example Bad Design 3
 public void testSomethingForAccount() {

 // set up for test

 Country country = new Country(“Canada”);

 Location location = new Location();
 location.setCountry(country);

 Preferences prefs = new Preferences();
 prefs.setLocation(location);

 User user = new User(prefs);

 Account account = new Account(user);

 … // test Canadian account
}

5
1

test code should be simple (less likely to have defects)

Improved Design 3


public void testSomethingForAccount() {

 Country country = new Country(“Canada”);

 // redesigned constructor
 // (requires only what is needed)
 Account account = new Account(country);

 … // test Canadian account
}

5
2

Test-Driven
Development

5
3

Automated Testing
Purpose:

◦ write software to help test
software
 automation essential to test-driven

development and refactoring

Limitations:
◦ manual testing still need to
observe certain problems
 e.g., strange noises from the speaker,

flickering graphics

5
4

Automated Testing
A good automated unit test:

◦ is simple to write and understand
 reduces the chance of defects in the test

code
◦ runs quickly

 so it can be re-run frequently while
developing

◦ is isolated
 could run multiple unit tests in parallel

◦ shows exactly what went wrong if it
fails
 reduce time spent in a debugger

5
5

Automated Testing
Quote:

◦ “Whenever you are tempted to
type something into a print
statement or a debugger
expression, write it as a test
instead.”

— Martin Fowler

5
6

“Way of Testivus”
“Think of code and tests as one

◦ When writing the code, think of the
tests.
When writing the tests, think of the
code.

When you think of code and tests as one,
testing is easy and the code is
beautiful.”

— Alberto Savoia

5
7

“Way of Testivus”
“Best time to test is when the code is
fresh

◦ Your code is like clay.
When it’s fresh, it’s soft and malleable.
As it ages, it becomes hard and brittle.

If you write tests when the code is fresh and
easy to change, testing will be easy,
and both the code and the tests will be
strong.”

— Alberto Savoia

5
8

Test-Driven Development
Idea:

◦ if testing is so useful, let’s write the
tests first

◦ these automated tests capture
code-level requirements to be
satisfied

◦ once code is written so that these
tests pass, then these requirements
are considered to be met

5
9

6
0

write method interface

write method body

write automated tests

run automated tests

adjust method and re-test until tests pass

traditional
development

6
1

write automated tests

run automated tests

write method interface and stub

run automated tests

adjust method and re-test until tests pass

write method body

run automated tests

test-first or
test-driven
development

JUnit Framework
Usage:

◦ for each class Foo
to be tested,
implement a
subclass named
FooTest of TestCase
in the same
package as Foo

◦ write test methods
in FooTest to test
the methods of
class Foo

each test method
implements one or
more test cases to be
checked (keep it
simple)

6
2

JUnit Framework
FooTest class has:

◦ test objects that may be
used in the test
methods

◦ setUp() method to
initialize the test
objects (or fixture)
before each test method
is run

◦ tearDown() method to
clean up the fixture
afterwards

Each test method:
is named testSomething

may initialize more specific
test objects

for the test objects, calls
the method in Foo to be
tested

checks the results against
what is expected using
assertion statements

6
3

JUnit Framework
Example test code:

public class NumberTest extends TestCase {
 private Number aNumber;
 private Number anotherNumber;

 protected void setUp() {
 aNumber = new Number(2);
 anotherNumber = new Number(3);
 }

 // check that value-based equality works
 public void testEquals() {
 Assert.assertTrue(!aNumber.equals(null));
 Assert.assertEquals(aNumber, aNumber);
 Assert.assertEquals(aNumber, new Number(2));
 Assert.assertTrue(!aNumber.equals(anotherNumber));
 }

6
4

JUnit Framework
Example test code:

 public void testAdd() {
 // more test data
 Number expected = new Number(5);
 // test Number.add method
 Number result = aNumber.add(anotherNumber);
 // check the result
 Assert.assertTrue(expected.equals(result));
 }

 …
}

Assert static methods:
◦ http://junit.sourceforge.net/
javadoc/junit/framework/Assert.html

6
5

In the Application
Example functional code:

public class Number {
 private int value;

 public boolean equals(Object anObject) {
 if (anObject instanceof Number) {
 Number aNumber = (Number)anObject;
 return aNumber.value == this.value;
 }
 return false;
 }
 …
}

6
6

In the Application
Issue:

◦ What methods
should be tested
with JUnit?

Approach:
write JUnit tests for
methods of the
application model
that have side effects
(i.e., not getter
methods)

use assertions on the
output of getter
methods to check
that constructors and
setter methods
worked properly

6
7

JUnit Framework
6
8

More Information
Books:

◦ Test-Driven Development
 K. Beck
 Addison-Wesley, 2003

6
9

More Information
Books:

◦ Testing Computer Software
 C. Kaner, J. Falk, H. Q. Nguyen
 Wiley, 1999

◦ Lessons Learned in Software
Testing
 C. Kaner, J. Bach, B. Pettichord
 Wiley, 2002

7
0

More Information
Links:

◦ Cause of AT&T Network Failure
 http://catless.ncl.ac.uk/Risks/

9.62.html#subj2

◦ History’s Worst Software Bugs
 http://www.wired.com/software/

coolapps/news/2005/11/69355

7
1

More Information
Links:

◦ Flexible Design? Testable Design?
You Don’t Have to Choose!
 R. Rufer and T. Bialik

◦ The Way of Testivus
 http://www.agitar.com/downloads/

TheWayOfTestivus.pdf

◦ JUnit Resources for Test-Driven
Development
 http://www.junit.org/

7
2

