
Design Patterns

Abram Hindle
Department of Computing Science
University of Alberta

2

Originally by Ken Wong

Images reproduced in these slides have been included under section
29 of the Copyright Act, as fair dealing for research, private study,
criticism, or review. Further distribution or uses may infringe
copyright.

Patterns
Idea:

a pattern is a solution to a problem in some context

experts work with patterns where appropriate, rather than
deriving everything from first principles

3 4
white to move

what pattern applies
to win the game?

isolated pawn

bishop pair

exposed king

open diagonals

Code Patterns
// not idiomatic

int x = -1;

while (9 > x) {
 ++x;
 table[x] = x;
}

// idiomatic

for (int i = 0; i < 10; i++) {
 table[i] = i;
}

5

Design Patterns
Idea:

a design pattern is a practical, proven solution to a
recurring design problem

not as well-defined as an algorithm or code, but consists of
a coherent set of abstractions

e.g., model-view-controller

6

Design Patterns
Builds a design vocabulary:

“So I have this data object that notifies all view objects
depending on it whenever the data changes. The nice thing
is that views can be added or removed dynamically, and
the data object doesn’t need to know the details of each
type of view …”

“Observer …”

7

GoF Pattern Catalog
Creational patterns (creating objects):

abstract factory, builder, factory method, prototype,
singleton

Structural patterns (connecting objects):
adapter, bridge, composite, decorator, façade, flyweight,
proxy

Behavioral patterns (distributing duties):
chain of responsibility, command, interpreter, iterator,
mediator, memento, observer, state, strategy, template
method, visitor

8

Singleton Pattern
Design intent:

“ensure a class only has one instance, and provide a global
point of access to it”

e.g., just one preferences object for application-wide settings

how?

9

Singleton Example Code 1
public class ExampleSingleton { // traditional way
 …
 private static final ExampleSingleton instance =
 new ExampleSingleton();

 // private constructor,
 // so only this class itself can call new,
 // and other classes cannot make another
 // instance
 private ExampleSingleton() {
 …
 }

 // use ExampleSingleton.getInstance() to access
 public static ExampleSingleton getInstance() {
 return instance;
 }
 …
}

10

Singleton Example Code 2
public class ExampleSingleton { // by Bill Pugh
 …
 // nested class is loaded and singleton instance
 // created on first call to getInstance()
 private static class ExampleSingletonHolder {
 private static final
 ExampleSingleton instance =
 new ExampleSingleton();
 }

 private ExampleSingleton() {
 …
 }

 public static ExampleSingleton getInstance() {
 return ExampleSingletonHolder.instance;
 }
 …
}

11

Singleton Example Code 3
public class ExampleSingleton { // lazy construction
 …
 private static ExampleSingleton instance = null;

 // protected constructor makes it possible to
 // create instances of subclasses
 protected ExampleSingleton() {
 …
 }

 // lazy construction of the instance
 public static ExampleSingleton getInstance() {
 if (instance == null) {
 instance = new ExampleSingleton();
 }
 return instance;
 }
 …
}

12

Composite Pattern
Design intent:

to compose individual objects to build up a tree structure

● e.g., a folder can contain files and other folders

the individual objects and the composed objects are
treated uniformly

● e.g., files and folders both have a name

13

“Recursive (De)composition”

14

a File

a Folder

a Folder a File a File

a Filea Folder

a File a Folder

Composite Example Structure

15

NamedItem

+getName(): String

File

0..*

Folder

Composite Pattern Structure

16

Component

Leaf Composite

could have other leafs and composites

Command Pattern

17

Command Pattern
Design intent:

“encapsulate a request as an object”, so you can run,
queue, log, undo/redo these requests

also known as Action or Transaction

18

Motivation
Idea:

a class may want to issue a request without knowing
anything about the operation being requested or the
receiver object for the request

make request itself as a command object, so we can store
it, run it, and pass it around

19

Motivation
Example uses:

pull logic out of the user interface classes into these
command objects

● easier to change the user interface or to move
to another user interface toolkit

● user interface classes call upon these command
objects to initiate requests for services

devise a set of command primitives for your application
back-end

● command subclasses encapsulate the right
receivers for services

20

Applicability
Situations to use this pattern:

to specify, queue, and run commands

● these activities can happen at different times

to support undo

● a command object can store the state needed for
reversing its effects

● executed commands can be stored in a history list

to implement a callback function

● object-oriented version of “function pointers”

21

Applicability
Situations to use this pattern:

to store a log of commands executed

● can re-apply the commands if the system
crashes

to structure a system around a set of primitive commands

● have “transactions”, each encapsulating a
coherent set of changes to the model data

22

Command Pattern Structure

23

Command

+execute()
+unexecute()
+isReversible(): boolean

ConcreteCommand

+execute()
+unexecute()
+isReversible(): boolean

Receiver

+action()

e.g., a model class

does the actual work

Invoker

e.g., a boundary or control class
e.g., command manager

asks a command to execute

Command Examples

24

Command

+execute()
+unexecute()
+isReversible(): boolean

PasteCommand

+execute()
+unexecute()
+isReversible(): boolean

SaveCommand

+execute()
+unexecute()
+isReversible(): boolean

Consequences
Results:

decouples the object that invokes the operation from the
one that knows how to perform it

easy to add new commands or manipulate them because
they are first-class objects

25

Undo and Redo

26

present

done commands

present

unexecute()

undo

history list

done undone

redo list

execute()

redo

Example Code
public abstract class Command {
 public abstract void execute();
 public abstract void unexecute();
 public abstract boolean isReversible();
}

// or use an interface

27

public class PasteCommand extends Command {
 private Document document; // a receiver
 private int position;
 private String text;
 …
 public PasteCommand(Document document,
 int position, String text) {

 this.document = document;
 this.position = position;
 this.text = text;
 }
 public void execute() {
 document.insertText(position, text);
 }
 public void unexecute() {
 document.deleteText(position,
 text.length());
 }
 public boolean isReversible() {
 return true;
 }
}

28

public class CommandManager {
 private LinkedList<Command> historyList;
 private LinkedList<Command> redoList;

 private CommandManager() {
 historyList = new LinkedList<Command>();
 redoList = new LinkedList<Command>();
 }

 // invoke a command and add it to history list
 public void invokeCommand(Command command) {

 command.execute();

 if (command.isReversible()) {
 historyList.addFirst(command);
 } else {
 historyList.clear();
 }

 if (redoList.size() > 0) {
 redoList.clear();
 }
 }

29

 public void undo() {
 if (historyList.size() > 0) {
 Command command =
 historyList.removeFirst();
 command.unexecute();
 redoList.addFirst(command);
 }
 }
 public void redo() {
 if (redoList.size() > 0) {
 Command command =
 redoList.removeFirst();
 command.execute();
 historyList.addFirst(command);
 }
 }
 // CommandManager is a singleton
 private static final CommandManager instance =
 new CommandManager();

 public static CommandManager getInstance() {
 return instance;
 }
}

30

// somewhere in an invoker

CommandManager commandManager =
 CommandManager.getInstance();

Command command = new PasteCommand(
 aDocument, aPosition, aText);

commandManager.invokeCommand(command);

31

Implementation Issues
Supporting multi-level undo and redo:

command state may include receiver(s), arguments used,
and complete original values to be restored

● e.g., a delete command needs to remember
what was deleted, so it can be undone

some requests cannot be undone since they may require
too much state to restore

● e.g., saving the document, global search and
replace

32

Implementation Issues
Macro commands:

can assemble commands into a command sequence to be
run

how?

33

Macro Command
public class MacroCommand extends Command {
 …
 private ArrayList<Command> commands;

 public MacroCommand() {
 commands = new ArrayList<Command>;
 }
 public addCommand(Command command) {
 commands.add(command);
 }
 …
 public void execute() {
 for (Command command : commands) {
 command.execute();
 }
 }
 …
}

34

Use the Composite Pattern

35

Command

+execute()
+unexecute()
+isReversible(): boolean

ConcreteCommand

+execute()
+unexecute()
+isReversible(): boolean

MacroCommand

+execute()
+unexecute()
+isReversible(): boolean

0..*

