> Adapter Pattern

S

US wall outlet

exposes an interface

plug from US laptop for getting power
expects a certain

interface for power

plug from US laptop
expects a certain
interface for power

adapter converts the
German interface into
a US interface

German wall outlet
exposes an interface
for getting power

your system vendor class
expects a certain provides a
interface certain interface

change the
vendor’s code?

your system should not
expects a certain change the
interface vendor’s code

your system vendor class
expects a certain provides a
interface certain interface

change
your code?

you do not want vendor class
to change your provides a
code either certain interface

your system
(no change)

adapter implements
the interface your
system expects

adapter converts
requests from

your system to

use the vendor class

vendor class
(no change)

Adapter Pattern

Design intent:
“convert the interface of a class into another interface that
clients expect”

“lets classes work together that couldn’t otherwise
because of incompatible interfaces”

also known as a wrapper

Motivation

Use:
adapting existing third-party components to suit your
conventions or interfaces

Adapter
implements the
target interface

translated
t
reqUeSt reques
N =

target interface

Client Adaptee

already programmed
against a
target interface

Object Adapter Structure

Client

«interfacey»

—>
Target Adaptee
Client uses the +request() +specificRequest()
Target interface
|
could have I
a rarget : Adapter
abstract uwrg ps”
superclass Adapter the Adaptee
and delegates
calls to it

+request()

/] target iInterface

public interface Duck {
public void fly();
public void quack();

/| adapter
public class TurkeyAdapter

publ i ¢ Tur keyAdapt er (

}
public void fly() {

}
public void quack() {

}

)

/| adaptee

public class Turkey {
public void fly() {
public void gobble() {

}

/[l turkeys fly 1/5 the
/] di stance of a duck

{

- }

-}

/] target iInterface /| adaptee

public interface Duck { public class Turkey {
public void fly(); public void fly() { ...}
public void quack(); public void gobble() { ...}
} }

/[l turkeys fly 1/5 the
/] di stance of a duck

/| adapter
public class TurkeyAdapter inmplenents Duck {
Tur key turkey;

public TurkeyAdapter(Turkey turkey) {
this.turkey = turkey;

}
public void fly() {

for (int i =0; i <5; i++) turkey. fly();
}

public void quack() {
t ur key. gobbl e();

}

Object Adapter Example

Client

—>

«interfacey»
Ilterator

ObjectArray

+hasNext(): boolean
+next(): Object
+remove()

/\

+size(): Integer
+get(i: Integer):
Object

Objectlterator

+hasNext(): boolean
+next(): Object
+remove()

third-party class

“sheeplike”

W

wolf
shepherd

how does

the

shepherd

tend a Wolf in sheep's clothing
wolf?

Class Adapter Structure

Client

Target

Adaptee

+request()

/\

+specificRequest()

/\

Adapter

+request()

implementation
language needs
to support
multiple
inheritance

Consequences

Object adapter: Class adapter:
more flexible since related to Adaptee
a single Adapter via Implementation
could adapt many iInheritance
Adaptees

can override
Adaptee

less delegation

Question

True or false?

Adapting a large interface takes a lot of work.

Adapters only adapt a single class.

	Adapter Pattern
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Adapter Pattern
	Motivation
	Slide 83
	Object Adapter Structure
	Slide 85
	Slide 86
	Object Adapter Example
	Slide 88
	Class Adapter Structure
	Consequences
	Question

