
Optimization

Abram Hindle
Department of Computing Science
University of Alberta

2

(C) 2011 Ken Wong (C) 2012 Abram Hindle

Our content is licensed under CC-BY-SA 3.0 Canada

Images reproduced in these slides have been included under section
29 of the Copyright Act, as fair dealing for research, private study,
criticism, or review. Further distribution or uses may infringe
copyright.

Code Tuning

3

Performance
Goal:

◦another non-functional requirement (quality)
besides correctness, flexibility, maintainability,

etc.

◦running more efficiently
 less time or less space or less power
 no change in functional behavior

◦often works against other qualities
 make sure of correctness first

4

Software Optimization
Quote:

◦“Premature optimization is the root
of all evil.”
— Donald Knuth

5

Software Optimization
Quotes:

◦“First Rule of Program Optimization:
Don’t do it.”

◦“Second Rule of Program
Optimization:
Don’t do it yet.”

— Michael A. Jackson

6

Optimization Levels
Requirements:

◦what is acceptable performance?
◦can the problem be simplified?

◦how much data as input?
◦how many results to generate?

 in memory or on disk or over the network, etc.

◦e.g., combinatorial generation
 array of size n, but n! permutations

7

Optimization Levels
High-level design:

◦how does generality affect
performance?

◦hinders through indirection
◦improves by easier replacement of

slow parts

8

Optimization Levels
Detailed design:

◦consider time and space complexity of data
structures and algorithms

◦it depends (what algorithms and size of n)
e.g., quicksort slower than insertion sort for small n

9

Algorithm
A has

O(n log n)
time

complexity

Algorithm
B has

O(n2)
time

complexity

which is faster in practice?

a1 n log n + a2 n + a3 b1 n2 + b2 n + b3

Optimization Levels
Detailed design:

◦may trade off time and space
more space / less time or less space / more time

◦e.g., table lookup
 consult table of pre-computed results rather than

a complex calculation each time

◦e.g., caching or memoization
 store fetched or computed values for later fast

retrieval and reuse

10

Memoization Example
 // fibonacci numbers 1, 1, 2, 3, 5, 8, …

public static int fib(int n) { // no memoization
 if (n == 0 || n == 1) {
 return 1;
 } else {
 return fib(n-1) + fib(n-2);
 }
}

 public static int fib(int n) { // with memoization
 if (result[n] == 0) { // result not yet known
 if (n == 0 || n == 1) {
 result[n] = 1;
 } else {
 result[n] = fib(n-1) + fib(n-2);
 }
 }
 result result[n];
}

11

Optimization Levels
Detailed design:

◦may choose algorithms with
relatively fewer expensive
operations

◦e.g., reducing multiplications

12

how many multiplications to compute?

evaluating a
polynomial

y = a4 x4 + a3 x3 +
a2 x2 + a1 x + a0

Horner’s method
y = (((a4 x + a3) x +

a2) x + a1) x + a0

Expensive Operations Example

13

known (x0, y0)

(x1, y1) expensive to know

monotonic function

given another point anywhere
on the horizontal line (x, y1),
is it left, on, or right of the
red point (x1, y1) ?

Optimization Levels
Operating system and libraries:

◦slow routines, input/output

◦e.g., memory allocation in heap (C
malloc)

14

C Memory Allocation Example

 typedef struct Node { /* linked list node */
 int info;
 …
 struct Node *link;
} Node;

 #include <stdlib.h>

/* allocating a list node */
Node *node = malloc(sizeof(Node));
…

 …
/* freeing a list node */
free(node);

15

Using a Free List
 Node *freenodes;

…
freenodes = (Node *)0;

 /* allocating a list node */
Node *n;
if (freenodes == (Node *)0) {
 node = (Node *)malloc(sizeof(Node));
} else {
 node = freenodes;
 freenodes = node->link;
}
…

 /* “freeing” a list node */
node->link = freenodes;
freenodes = node;

16

Optimization Levels
Optimizing compilers:

◦let a “good compiler” optimize the
code

◦e.g., constant folding/propagation
solve constant expressions at compile

time

◦e.g., common subexpression
elimination
 solve common subexpressions once

17

Optimization Levels
Optimizing compilers:

◦e.g., loop invariant code motion
 move invariant parts of a loop outside the

loop

◦e.g., strength reduction
 replace costly operations with cheaper

ones

18

Costly Replacement

y = x * 2; y = x + x;

y = x * 8; y = x << 3;

y = x / 4; y = x >> 2;

y = x * 31; y = (x << 5) – x;

y = x * 9; y = (x << 3) + x;

integer x, y

Loop Strength Reduction
 int c = 9;

for (int i = 0; i < n; i++) {
 a[i] = i * c;
}

 /* replace multiplication with additions */

int c = 9;
int t = 0;
for (int i = 0; i < n; i++) {
 a[i] = t;
 t += c;
}

19

Optimizing Loops (Before)
 // insert t in a

// sorted linked list

p = header;
q = p.link;

while (q.info <= t.info) {
 p = q;
 q = q.link;
}

t.link = q;
p.link = t;

20

t

header

p q

2 assignments
per comparison

Optimizing Loops (After)
 p = header;

for (;;) {
 q = p.link;
 if (q.info <= t.info) {
 t.link = q;
 p.link = t;
 break;
 }
 p = q.link;
 if (p.info <= t.info) {
 t.link = p;
 q.link = t;
 break;
 }
}

21

1 assignment
per comparison

Optimizing Loops
 i = 0;

while (i < n) {
 a[i] = i;
 i++;
}

 // unrolled once

i = 0;
while (i < n-1) {
 a[i] = i;
 a[i+1] = i+1;
 i += 2;
}
if (i < n) {
 a[n-1] = n-1;
}

22

reducing
loop housekeeping
by loop unrolling

Optimization Levels
Optimizing compilers:

◦some static compilers can use profiling data

◦e.g., reorder if-then-else tests by frequency
 tests that are more likely to be true come earlier

◦just-in-time compilation in virtual machine
 converts interpreted bytecode to natively executed binary

code at run time

 JIT itself takes time and space, however

23

Optimization Levels
Assembly language:

◦write slow parts in handcrafted assembly code

◦but very hard to beat an optimizing compiler

◦for portability reasons, compilers might avoid
using certain machine instructions
(even if more efficient)

◦handcrafted assembly code can use these
instructions

24

Optimization Levels
Hardware:

◦“throw more hardware at the problem”

◦understand the performance
characteristics of the hardware you
have

◦e.g., input/output, cache, processing
cores, etc.

25

Avoid Superstitions
Myth:

◦“shorter code is faster code”
 fewer statements in source code

does not mean fewer executed
instructions

26

for (i = 0; i < 10; i++) {
 a[i] = i;
}

a[0] = 0;
a[1] = 1;
a[2] = 2;
a[3] = 3;
a[4] = 4;
a[5] = 5;
a[6] = 6;
a[7] = 7;
a[8] = 8;
a[9] = 9;

performance factor
of fully unrolled loop?

Performance

27

Environment for Loop Straightline Time Savings Ratio

java 1.5.0_19 5.838 2.957 49% 2:1

gcc 4.0.1 -O 2.826 1.564 45% 1.8:1

gcc 4.0.1 -O2 2.345 1.563 33% 1.5:1

gcc 4.0.1 -O3 1.503 0.631 58% 2.4:1

perl 5.10.1 694.671 300.776 57% 2.3:1

gcc 4.0.1 12.207 4.364 64% 2.8:1

times in seconds for 100 million trials

Apple PowerBook G4
PowerPC 7447B 1.67 GHz, 64 KB L1, 512 KB L2, 1 GB RAM
Mac OS X 10.4.11

Performance

28

/* C code:
 * t and s point at null terminated char arrays
 */
while (*t++ = *s++); while (*s != ‘\0’) {

 *t = *s;
 t++;
 s++;
}
*t = ‘\0’;

Compiler Version 1 Version 2 Time Savings Ratio

gcc 4.0.1 32.944 27.714 16% 1.19:1

gcc 4.0.1 -O 5.651 4.509 20% 1.25:1

gcc 4.0.1 -O2 4.449 4.449 0% 1.00:1

times in seconds for 100 million copies of 20 character strings

gcc 4.0.1 -O3 4.208 4.389 –4% 0.96:1

or just use strcpy()

Avoid Superstitions
Myth:

◦certain operations are typically
faster than others
 careful with “typically” or rules of thumb

◦measure (and re-measure) effect
after changes
 time the operations to see actual

performance?

29

Benchmarking Pitfalls
 #define LIMIT 100000000

int main() {
 double x, y, z;

 x = 5.0;
 y = 7.0;

 int i;
 for (i = 0; i < LIMIT; i++) {
 // floating-point multiplication test
 z = x * y;
 }
}

30

with constant folding,
the compiler knows that x * y is 35,
so no actual multiplication at run time

with loop invariant code motion,
the compiler knows that z = 35 can
be moved outside the loop,
making the loop empty

since z is not used,
the compiler does not even
assign z

Avoid Superstitions
Myth:

◦optimize as you write the code
 hard to optimize before the code is

correct
 micro-optimizations may have

insignificant benefit
 detracts from other quality concerns

◦don’t optimize indiscriminately

31

Bottlenecks
Observation:

◦80% of the execution time resides in
about 20% of a program’s routines
— Barry Boehm

◦Pareto principle (80/20 rule)

32

Bottlenecks
Quote:

◦“Bottlenecks occur in surprising
places, so don’t try to second guess
and put in a speed hack until you
have proven that’s where the
bottleneck is.”

— Rob Pike

33

Bottlenecks
Huge semantic gap:

◦programmers are very poor at
guessing the cause of bottlenecks

34

language

libraries

compilers

virtual machine

operating system

hardware

performance depends
on many layers

Bottlenecks
Profilers:

◦reports performance hotspots
 time spent in each routine
 frequency counts of each routine
 frequency counts of each statement
 heap usage

35

Bottlenecks
Code tuning:

◦what works well in one environment
may not work well in another (non-
portable)

◦code tuning itself might defeat
compiler optimizations

36

Code Tuning Example
 // given array a, currently with n elements,

// return index of x, otherwise return -1

public static int indexOf(int[] a, int n, int x) {
 int answer = -1;
 for (int i = 0; i < n; i++) {
 if (a[i] == x) answer = i;
 }
 return answer;
}

 // version 2
public static int indexOf(int[] a, int n, int x) {
 for (int i = 0; i < n; i++) {
 if (a[i] == x) return i;
 }
 return -1;
}

37

reduce to one comparison per
iteration?

should stop when you know the
answer

Using a Sentinel
 public static int indexOf(int[] a, int n, int x) {

 a[n] = x;
 int i = 0;
 while (a[i] != x) i++;

 return i == n ? -1 : i;
}

38

Performance

39

Environment Version 2 With Sentinel Time Savings Ratio

java 1.5.0_19 4.568 4.261 7% 1.07:1

gcc 4.0.1 -O 2.709 2.258 17% 1.20:1

gcc 4.0.1 -O2 2.708 1.882 31% 1.44:1

gcc 4.0.1 -O3 2.332 1.881 19% 1.24:1

gcc 4.0.1 11.227 9.405 16% 1.19:1

times in seconds for 100000 calls, n = 10000, worst case

Apple PowerBook G4
PowerPC 7447B 1.67 GHz, 64 KB L1, 512 KB L2, 1 GB RAM
Mac OS X 10.4.11

Java Tuning
String concatenation:

◦how to append strings efficiently?

 String words[] = {
 “these”,
 “are”,
 “some”,
 “test”,
 “words”,
 …
};

40

Java Tuning
 // String plus operator

String answer = “”;

for (String s : words) {
 answer += s;
}

 // using StringBuffer (synchronized)

StringBuffer buffer = new StringBuffer(“”);

for (String s : words) {
 buffer.append(s);
}
String answer = buffer.toString();

 // or use StringBuilder (un-synchronized)

41

Performance

42

Environment String + StringBuffer StringBuilder

java 1.5.0_19 3.286 1.585 1.314

times in seconds for 1000000 trials

Apple PowerBook G4
PowerPC 7447B 1.67 GHz, 64 KB L1, 512 KB L2, 1 GB RAM
Mac OS X 10.4.11

use StringBuffer or StringBuilder when
appending lots of Strings

Java String + versus
StringBuilder
 …

new #4; // class StringBuilder
…
invokespecial #5; // method StringBuilder init
…
invokevirtual #6; // method StringBuilder append
…
invokevirtual #6; // method StringBuilder append
invokevirtual #7; // method StringBuilder toString
…

 …
invokevirtual #6; // method StringBuilder append
…

43

Java Tuning
Accessing variables:

◦local variables in a method are faster
to access and manipulate than static
or instance variables in the class

 public class Bar {
 private int instanceVar;
 private static int staticVar;

 public void access() {
 int localVar;
 …
 }
}

44

Performance

45

Environment instance static local

java 1.5.0_19 6.086 5.625 2.522

times in seconds for 1 billion changes to int variable

Apple PowerBook G4
PowerPC 7447B 1.67 GHz, 64 KB L1, 512 KB L2, 1 GB RAM
Mac OS X 10.4.11

Java virtual machine is stack-based,
and optimized to access stack data

Java Tuning
Inlining methods:

◦compiler replaces a method call with the
actual body

 public class Counter {
 …
 public final int getCount() {
 …
 }
 …
}

 …
Counter counter = new Counter();
int c = counter.getCount();

46

useful for small methods,
where the call overhead is
relatively high compared to
the work done

but only
applicable if
compiler knows
what replacement
code to use

i.e., no dynamic
binding happening

Java Tuning
Inlining methods:

◦static, final, or private methods can
potentially be inlined since they are
statically bound at compile time (no
potential overriding)

◦however, Java compilers may
actually do nothing to inline these
methods, leaving the JIT to optimize
method calls

47

Java Tuning
Traversals:

◦how to traverse elements of an
ArrayList<T>

 // version 1
Enumeration e = Collections.enumeration(a);
while (e.hasMoreElements()) {
 // process object e.nextElement()
}

 // version 2
ListIterator<T> iter = a.listIterator();
while (iter.hasNext()) {
 // process object iter.next()
}

48

Java Tuning
 // version 3

Iterator<T> iter = a.iterator();
while (iter.hasNext()) {
 // process object iter.next()
}

 // version 4
for (T each : a) {
 // process object each
}

 // version 5
int n = a.size();
for (int i = 0; i < n; i++) {
 // process object a.get(i)
}

49

Performance

50

Enumeratio
n

List
Iterator

Iterator for each for get(i
)

java
1.5.0_19

11.464 10.142 9.164 9.137 3.387

times in seconds for 10000 traversals of 10000 element ArrayList

Apple PowerBook G4
PowerPC 7447B 1.67 GHz, 64 KB L1, 512 KB L2, 1 GB RAM
Mac OS X 10.4.11

according to the bytecode, the
for each loop is just syntactic sugar
for an Iterator

Java Tuning
Minimize the cost of object

creation:
◦use “lazy evaluation”

not creating an object until you have to

◦be wary of deep inheritance
hierarchies
 many cascaded constructors

51

More Information
Books:

◦Code Complete
 S. McConnell
 Microsoft Press, 2004

◦Writing Efficient Programs
 J. Bentley
 Prentice-Hall, 1982

52

More Information
Links:

◦Java Performance Tuning
 http://www.javaperformancetuning.com/

53

