
REVIEW

Ken Wong
Department of Computing Science
University of Alberta

Jeopardy Game

  Instructions:
◦  clue is stated
◦  raise your hand
◦  you state the question (in that form)

◦  not really final exam questions

◦  but an interesting, “competitive” review of
software engineering concepts and terms

2

OOAD

 Clue:
◦ An object-oriented programming language,

invented by James Gosling.

 Question:
◦ What is Java?

3

OOAD

 Clue:
◦ A visual design notation, that’s “unified”.

 Question:
◦ What is UML?

4

Process

 Clue:
◦ Making sure you develop the system right.

 Question:
◦ What is verification?

5

Process

 Clue:
◦ Making sure you develop the right system.

 Question:
◦ What is validation?

6

Process

 Clue:
◦ Three approaches of software prototyping.

 Question:
◦ What are throwaway, incremental,

evolutionary?
7

Process

 Clue:
◦ The system is delivered in a series of releases

or builds.

 Question:
◦ What is staged delivery?

8

Process

 Clue:
◦  In Extreme Programming, code should

conform to these rules.

 Question:
◦ What are coding conventions?

9

Process

 Clue:
◦ A practice where production code is written

with two programmers actively at one
machine.

 Question:
◦ What is pair programming?

10

OOAD

 Clue:
◦  Simplifying to its essentials the description of

a real-world entity or concept.

 Question:
◦ What is abstraction?

11

OOAD

 Clue:
◦  Bundling data with access functions, in a way

that distinguishes “what” from “how”.

 Question:
◦ What is encapsulation?

12

OOAD

 Clue:
◦ Revealing assumptions through interfaces and

hiding changeable internal details.

 Question:
◦ What is information hiding?

13

OOAD

 Clue:
◦  “Some” relationship between parts.

 Question:
◦ What is an association?

14

OOAD

 Clue:
◦ A weak “has-a” relationship.

 Question:
◦ What is an aggregation?

15

OOAD

 Clue:
◦ Contained instances are exclusive to the

container in this kind of UML relationship.

 Question:
◦ What is a composition?

16

OOAD

 Clue:
◦  Looking for conceptual commonalities in

abstractions.

 Question:
◦ What is generalization?

17

OOAD

 Clue:
◦  In Java, this can be considered a “contract”,

specifying a capability that implementing
classes must provide.

 Question:
◦ What is an interface?

18

OOAD

 Clue:
◦  If this test fails, inheritance is likely not

appropriate.

 Question:
◦ What is the is-a test?

19

OOAD

 Clue:
◦ A candidate subclass should be substitutable

anywhere a reference to a superclass object is
used, according to this principle.

 Question:
◦ What is the Liskov substitution principle?

20

OOAD

 Clue:
◦ Treating different objects in a uniform manner

in a common algorithm.

 Question:
◦ What is polymorphism?

21

OOAD

 Clue:
◦ This kind of class cannot be instantiated.

 Question:
◦ What is an abstract class?

22

OOAD

 Clue:
◦ The method to run is selected at run time,

depending on the type of the receiving object.

 Question:
◦ What is dynamic binding?

23

OOAD

 Clue:
◦ This widening type of cast is safe due to the

principle of substitutability.

 Question:
◦ What is an upcast?

24

OOAD

 Clue:
◦ Using index cards to assist object-oriented

analysis.

 Question:
◦ What is CRC design?

25

OOAD

 Clue:
◦ One should reduce this between classes.

 Question:
◦ What is coupling?

26

OOAD

 Clue:
◦ Time flows downward in this UML diagram to

express behavior between objects.

 Question:
◦ What is a UML sequence diagram?

27

OOAD

 Clue:
◦  Each object in a UML sequence diagram plays

this in a group of collaborating objects.

 Question:
◦ What is a role?

28

Software Design

 Clue:
◦ A design to maintain the consistency of the

views of some data within an interactive
application.

 Question:
◦ What is MVC (model-view-controller)?

31

Software Design

 Clue:
◦  In Java, this interface is used with the

Observable superclass.

 Question:
◦ What is Observer?

32

User Interface

 Clue:
◦ According to Scott Adams, engineers,

scientists, and programmers are not
representative of these people.

 Question:
◦ What are normal people?

34

User Interface

 Clue:
◦ Objects of interest in a graphical user

interface should be visible, to exploit this
cognitive ability.

 Question:
◦ What is recognition?

35

User Interface

 Clue:
◦ This kind of design uses layout and color to

help organize and communicate information
economically to users.

 Question:
◦ What is graphic design?

37

User Interface

 Clue:
◦  Because of this, color should not be the only

way to distinguish visual elements.

 Question:
◦ What is color blindness?

38

Requirements

 Clue:
◦ They may not know what is possible, or be

able to express their needs.

 Question:
◦ Who are users?

39

Requirements

 Clue:
◦ Required qualities, such as those -ibilities.

 Question:
◦ What are non-functional requirements?

40

Requirements

 Clue:
◦ Requirements should be this, so tests can be

designed to show the system fulfills them.

 Question:
◦ What is verifiable?

41

Requirements

 Clue:
◦ This captures the goal, conditions, and steps of

a coherent interaction between the users and
the system.

 Question:
◦ What is a use case?

43

Requirements

 Clue:
◦ Different types of users or roles in use cases.

 Question:
◦ What are actors?

44

Requirements

 Clue:
◦ A way to specify a need often written in the

form: as a «user role», I want «goal».

 Question:
◦ What is a user story?

45

Requirements

 Clue:
◦ A UML diagram used to model the behavior

of an object in response to external events.

 Question:
◦ What is a UML state diagram?

46

Testing

 Clue:
◦ This leads to faults in work products, and may

cause failures in running software.

 Question:
◦ What is human error?

47

Testing

 Clue:
◦ This kind of testing is to prevent previous

problems from reoccurring.

 Question:
◦ What is regression testing?

48

Testing

 Clue:
◦ The correct way to test a theory is to seek

this.

 Question:
◦ What is to refute it?

49

Testing

 Clue:
◦ Use this technique to separate out

dependency resolution from the constituent
classes and enhance testability.

 Question:
◦ What is dependency injection?

50

Testing

 Clue:
◦ A kind of testing object that mimics the real

object but can be further instrumented.

 Question:
◦ What is a mock object?

51

Testing

 Clue:
◦ A way of development where tests are

generally written before the code.

 Question:
◦ What is test-driven development?

52

Testing

 Clue:
◦ A commonly used Java framework for writing

unit tests.

 Question:
◦ What is JUnit?

53

 Clue:
◦ A practical, proven solution to a recurring

design problem.

 Question:
◦ What is a design pattern?

54

Design Patterns

 Clue:
◦ This design pattern ensures a class only has

one instance, and provides a global point of
access to it.

 Question:
◦ What is the singleton pattern?

55

Design Patterns

 Clue:
◦ This design pattern composes individual

objects to form a tree structure, and treats
individual and composed objects uniformly.

 Question:
◦ What is the composite pattern?

56

Design Patterns

 Clue:
◦ This design pattern encapsulates a request as

an object, so you can later undo/redo the
request.

 Question:
◦ What is the command pattern?

57

Design Patterns

 Clue:
◦ This design pattern defines the skeleton of an

algorithm, deferring some steps to subclasses.

 Question:
◦ What is the template method pattern?

58

Design Patterns

 Clue:
◦ An object whose main responsibility is to

make other objects.

 Question:
◦ What is a factory object?

59

Design Patterns

 Clue:
◦ This design pattern defines an interface for

creating an object, but lets subclasses decide
which class to instantiate.

 Question:
◦ What is the factory method pattern?

60

Design Patterns

 Clue:
◦ This design pattern allows an object to alter

its behavior when its internal state changes.

 Question:
◦ What is the state pattern?

61

Design Patterns

 Clue:
◦ This design pattern adapts the interface of a

class into another interface that clients
expect.

 Question:
◦ What is the adapter pattern?

62

Design Patterns

 Clue:
◦ This design pattern provides a surrogate for

another object, to control access to it.

 Question:
◦ What is the proxy pattern?

63

Design Patterns

 Clue:
◦ 

 Question:
◦ What is the decorator pattern?

64

Decorator

+operation()

ConcreteDecorator1

+operation()

ConcreteDecorator1

+operation()

ConcreteComponent

+operation()

Component

+operation()

encloses

1

Design Patterns

 Clue:
◦ 

 Question:
◦ What is the chain of responsibility pattern?

65

Handler

+handleRequest()

ConcreteHandler1

+handleRequest()

ConcreteHandler2

+handleRequest()

Client

next

Design Patterns

 Clue:
◦  In this design principle, classes should be open

for extension but closed for modification.

 Question:
◦ What is the open-closed principle?

66

Design Patterns

 Clue:
◦  In this design principle, depend on

abstractions or generalizations, not on
concrete classes.

 Question:
◦ What is the dependency inversion principle?

67

Design Patterns

 Clue:
◦  In this design principle, for a class, reduce the

number of classes it knows about and
interacts with.

 Question:
◦ What is the principle of least knowledge?

68

Design Patterns

 Clue:
◦ This law suggests the only methods that may

be called, to conform with the principle of
least knowledge.

 Question:
◦ What is the Law of Demeter?

69

 Clue:
◦ Change a software system so that the

external behavior does not change but the
internal structure is improved.

 Question:
◦ What is refactoring?

70

Refactoring

 Clue:
◦ Risk is reduced in refactoring by proceeding in

small steps and doing this after each step.

 Question:
◦ What is testing?

71

Refactoring

 Clue:
◦  Indications that the code may need

refactoring.

 Question:
◦ What are code smells?

72

Refactoring

 Clue:
◦ Code with very complex, tangled control flow

typified by lots of gotos.

 Question:
◦ What is spaghetti code?

73

Refactoring

 Clue:
◦ A class that gets increasingly larger, which may

indicate poor separate of concerns.

 Question:
◦ What is a blob class?

74

Refactoring

 Clue:
◦ When a class is commonly changed in

different ways for different reasons.

 Question:
◦ What is “divergent change”?

75

Refactoring

 Clue:
◦ When making a change requires many little

changes across many different classes or
methods.

 Question:
◦ What is “shotgun surgery”?

76

Refactoring

 Clue:
◦ When a method seems more interested in

the details of a class other than the one it is
in.

 Question:
◦ What is “feature envy”?

77

Refactoring

 Clue:
◦ When using the built-in types too much

rather than classes to represent concepts in
the problem domain.

 Question:
◦ What is “primitive obsession”?

78

Refactoring

 Clue:
◦ When code is created because “we might

need it someday”, which adds design
complexity.

 Question:
◦ What is “speculative generality”?

79

Refactoring

 Clue:
◦ When a subclass inherits something that is

not needed.

 Question:
◦ What is “refused bequest”?

80

Refactoring

 Clue:
◦  Potentially deodorant for bad smelling code.

 Question:
◦ What are comments?

81

Optimization

 Clue:
◦ According to Donald Knuth, this is the root of

all evil.

 Question:
◦ What is premature optimization?

82

Optimization

 Clue:
◦ Do this first before tuning the code.

 Question:
◦ What is profiling?

83

Optimization

 Clue:
◦ To reduce time, one uses more of this

resource in caching or memoization.

 Question:
◦ What is space?

84

Optimization

 Clue:
◦ An efficient method to evaluate a polynomial

that reduces expensive multiplications.

 Question:
◦ What is Horner’s method?

85

Optimization

 Clue:
◦ Optimizing compilers fold and propagate

these, because they do not change.

 Question:
◦ What are constants?

86

Optimization

 Clue:
◦ A loop transformation to reduce the amount

of loop housekeeping in each iteration.

 Question:
◦ What is loop unrolling?

87

Optimization

 Clue:
◦ This converts interpreted bytecode to

natively executed binary code at run time.

 Question:
◦ What is a just-in-time compiler?

88

Optimization

 Clue:
◦ The 80/20 rule is also known as this principle.

 Question:
◦ What is the Pareto principle?

89

Optimization

 Clue:
◦  In Java, use this class directly to append lots of

strings more efficiently.

 Question:
◦ What is StringBuilder?

90

Optimization

 Clue:
◦ An optimization where a method call is

replaced with the actual body of the method.

 Question:
◦ What is inlining?

91

