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Performance 

! Goal: 

◦  another non-functional requirement (quality) 

"  besides correctness, flexibility, maintainability, etc. 

◦  running more efficiently 

"  less time or less space or less power 

"  no change in functional behavior 

 

◦  often works against other qualities 

"  make sure of correctness first 
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Software Optimization 

! Quote: 

◦  “Premature optimization is the root of all 
evil.” 
— Donald Knuth 
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Software Optimization 

! Quotes: 

◦  “First Rule of Program Optimization: 
Don’t do it.” 

◦  “Second Rule of Program Optimization: 
Don’t do it yet.” 
 
— Michael A. Jackson 

6


Optimization Levels 

! Requirements: 

◦ what is acceptable performance? 

◦  can the problem be simplified? 

◦  how much data as input? 

◦  how many results to generate? 

"  in memory or on disk or over the network, etc. 

◦  e.g., combinatorial generation 

"  array of size n, but n! permutations 
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Optimization Levels 

! High-level design: 

◦  how does generality affect performance? 

◦  hinders through indirection 

◦  improves by easier replacement of slow parts 

8


Optimization Levels 

! Detailed design: 

◦  consider time and space complexity of data 
structures and algorithms 

 

 

◦  it depends (what algorithms and size of n) 

"  e.g., quicksort slower than insertion sort for small n 
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Algorithm A has 
O( n log n ) 

time complexity 

Algorithm B has 
O( n2 ) 

time complexity 

which is faster in practice? 

a1 n log n + a2 n + a3 b1 n
2 + b2 n + b3 



Optimization Levels 

! Detailed design: 

◦ may trade off time and space 

"  more space / less time or less space / more time 

◦  e.g., table lookup 

"  consult table of pre-computed results rather than a 
complex calculation each time 

◦  e.g., caching or memoization 

"  store fetched or computed values for later fast 
retrieval and reuse 
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Memoization Example 
!  // fibonacci numbers 1, 1, 2, 3, 5, 8, …  

public static int fib( int n ) { // no memoization  
    if (n == 0 || n == 1) {  
        return 1;  
    } else {  
        return fib( n-1 ) + fib( n-2 );  
    }  
}


!  public static int fib( int n ) { // with memoization  
    if (result[n] == 0) { // result not yet known  
        if (n == 0 || n == 1) {  
            result[n] = 1;  
        } else {  
            result[n] = fib( n-1) + fib( n-2 );  
        }  
    }  
    result result[n];  
}
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Optimization Levels 

! Detailed design: 

◦ may choose algorithms with relatively fewer 
expensive operations 

◦  e.g., reducing multiplications 
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how many multiplications to compute? 

evaluating a polynomial 
y = a4 x

4 + a3 x
3 + a2 x

2 + a1 x + a0 

Horner’s method 
y = ( ( ( a4 x + a3 ) x + a2 ) x + a1 ) x + a0 

Optimization Levels 

! Operating system and libraries: 

◦  slow routines, input/output 

◦  e.g., memory allocation in heap (C malloc) 
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C Memory Allocation Example 
!  typedef struct Node { /* linked list node */  

    int info;  

    …  

    struct Node *link;  

} Node;  




!  #include <stdlib.h>  

 

/* allocating a list node */  

Node *node = malloc( sizeof( Node ) );  

…  




!  …  

/* freeing a list node */  

free( node );
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Using a Free List 
!  Node *freenodes;  

…  

freenodes = (Node *)0;


!  /* allocating a list node */  

Node *n;  

if (freenodes == (Node *)0) {  

    node = (Node *)malloc( sizeof( Node ) );  

} else {  

    node = freenodes;  

    freenodes = node->link;  

}  

…


!  /* “freeing” a list node */  

node->link = freenodes;  

freenodes = node;
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Optimization Levels 

! Optimizing compilers: 

◦  let a “good compiler” optimize the code 

◦  e.g., constant folding/propagation 

"  solve constant expressions at compile time 

◦  e.g., common subexpression elimination 

"  solve common subexpressions once 
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Optimization Levels 

! Optimizing compilers: 

◦  e.g., loop invariant code motion 

"  move invariant parts of a loop outside the loop 

◦  e.g., strength reduction 

"  replace costly operations with cheaper ones 
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Costly Replacement


y = x * 2;
 y = x + x;


y = x * 8;
 y = x << 3;


y = x / 4;
 y = x >> 2;


y = x * 31;
 y = (x << 5) – x;


y = x * 9;
 y = (x << 3) + x;


integer x, y 



Loop Strength Reduction 
!  int c = 9;  

for (int i = 0; i < n; i++) {  

    a[i] = i * c;  

}





!  /* replace multiplication with additions */  

 

int c = 9;  

int t = 0;  

for (int i = 0; i < n; i++) {  

    a[i] = t;  

    t += c;  

}  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Optimizing Loops (Before) 
!  // insert t in a  

// sorted linked list  

 

p = header;  

q = p.link;  

 

while (q.info <= t.info) {  

    p = q;  

    q = q.link;  

}  

 

t.link = q;  

p.link = t;
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t 

header 

p q 

2 assignments 
per comparison 

Optimizing Loops (After) 
!  p = header;  

for ( ;; ) {  

    q = p.link;  

    if (q.info <= t.info) {  

        t.link = q;  

        p.link = t;  

        break;  

    }  

    p = q.link;  

    if (p.info <= t.info) {  

        t.link = p;  

        q.link = t;  

        break;  

    }  

}
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1 assignment 
per comparison 

Optimizing Loops 
!  i = 0;  

while (i < n) {  

    a[i] = i;  

    i++;  

}


!  // unrolled once  

 

i = 0;  

while (i < n-1) {  

    a[i] = i;  

    a[i+1] = i+1;  

    i += 2;  

}  

if (i < n) {  

    a[n-1] = n-1;  

}  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reducing 
loop housekeeping 

by loop unrolling 



Optimization Levels 

! Optimizing compilers: 

◦  some static compilers can use profiling data 

◦  e.g., reorder if-then-else tests by frequency 

"  tests that are more likely to be true come earlier 

 

◦  just-in-time compilation in virtual machine 

"  converts interpreted bytecode to natively executed 
binary code at run time 

"  JIT itself takes time and space, however 
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Optimization Levels 

! Assembly language: 

◦ write slow parts in handcrafted assembly code 

◦  but very hard to beat an optimizing compiler 

◦  for portability reasons, compilers might avoid 
using certain machine instructions 
(even if more efficient) 

◦  handcrafted assembly code can use these 
instructions 
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Optimization Levels 

! Hardware: 

◦  “throw more hardware at the problem” 

◦  understand the performance characteristics of 
the hardware you have 

◦  e.g., input/output, cache, processing cores, etc. 
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Avoid Superstitions  

! Myth: 

◦  “shorter code is faster code” 

"  fewer statements in source code 
does not mean fewer executed instructions 
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for (i = 0; i < 10; i++) {  

    a[i] = i;  

}


a[0] = 0;  

a[1] = 1;  

a[2] = 2;  

a[3] = 3;  

a[4] = 4;  

a[5] = 5;  

a[6] = 6;  

a[7] = 7;  

a[8] = 8;  

a[9] = 9;


performance factor 
of fully unrolled loop? 



Performance 
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Environment for Loop Straightline Time Savings Ratio 

java 1.5.0_19 5.838 2.957 49% 2:1 

gcc 4.0.1 -O 2.826 1.564 45% 1.8:1 

gcc 4.0.1 -O2 2.345 1.563 33% 1.5:1 

gcc 4.0.1 -O3 1.503 0.631 58% 2.4:1 

perl 5.10.1 694.671 300.776 57% 2.3:1 

gcc 4.0.1 12.207 4.364 64% 2.8:1 

times in seconds for 100 million trials 

Apple PowerBook G4 
PowerPC 7447B 1.67 GHz, 64 KB L1, 512 KB L2, 1 GB RAM 

Mac OS X 10.4.11  

Performance  
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/* C code:  

 * t and s point at null terminated char arrays  

 */  

while (*t++ = *s++);  




 




 

while (*s != ‘\0’) {  

    *t = *s;  

    t++;  

    s++;  

}  

*t = ‘\0’;  




Compiler Version 1 Version 2 Time Savings Ratio 

gcc 4.0.1 32.944 27.714 16% 1.19:1 

gcc 4.0.1 -O 5.651 4.509 20% 1.25:1 

gcc 4.0.1 -O2 4.449 4.449 0% 1.00:1 

times in seconds for 100 million copies of 20 character strings 

gcc 4.0.1 -O3 4.208 4.389 –4% 0.96:1 

or just use strcpy() 

Avoid Superstitions 

! Myth: 

◦  certain operations are typically 
faster than others 

"  careful with “typically” or rules of thumb 

◦ measure (and re-measure) effect after changes 

"  time the operations to see actual performance? 
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Benchmarking Pitfalls 
!  #define LIMIT 100000000  

 

int main() {  

    double x, y, z;  

 

    x = 5.0;  

    y = 7.0;  

 

    int i;  

    for (i = 0; i < LIMIT; i++) {  

        // floating-point multiplication test  

        z = x * y;  

    }  

}
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with constant folding, 
the compiler knows that x * y is 35, 

so no actual multiplication at run time 

with loop invariant code motion, 
the compiler knows that z = 35 can 

be moved outside the loop, 
making the loop empty 

since z is not used, 
the compiler does not even 

assign z 



Avoid Superstitions 

! Myth: 

◦  optimize as you write the code 

"  hard to optimize before the code is correct 

"  micro-optimizations may have insignificant benefit 

"  detracts from other quality concerns 

◦  don’t optimize indiscriminately 
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Bottlenecks 

! Observation: 

◦  80% of the execution time resides in about 
20% of a program’s routines 
— Barry Boehm 

◦  Pareto principle (80/20 rule) 
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Bottlenecks 

! Quote: 

◦  “Bottlenecks occur in surprising places, so 
don’t try to second guess and put in a speed 
hack until you have proven that’s where the 
bottleneck is.” 
 
— Rob Pike 
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Bottlenecks 

! Huge semantic gap: 

◦  programmers are very poor at guessing the 
cause of bottlenecks 
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language 

libraries 

compilers 

virtual machine 

operating system 

hardware 

performance depends 
on many layers 



Bottlenecks 

! Profilers: 

◦  reports performance hotspots 

"  time spent in each routine 

"  frequency counts of each routine 

"  frequency counts of each statement 

"  heap usage 
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Bottlenecks 

! Code tuning: 

◦ what works well in one environment may not 
work well in another (non-portable) 

◦  code tuning itself might defeat compiler 
optimizations 
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Code Tuning Example 
!  // given array a, currently with n elements,  

// return index of x, otherwise return -1  

 

public static int indexOf( int[] a, int n, int x ) {  

    int answer = -1;  

    for (int i = 0; i < n; i++) {  

        if (a[i] == x) answer = i;  

    }  

    return answer;  

}


!  // version 2  

public static int indexOf( int[] a, int n, int x ) {  

    for (int i = 0; i < n; i++) {  

        if (a[i] == x) return i;  

    }  

    return -1;  

}  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reduce to one comparison per 
iteration? 

should stop when you know the 
answer 

Using a Sentinel 
!  public static int indexOf( int[] a, int n, int x ) {  

    a[n] = x;  

    int i = 0;  

    while (a[i] != x) i++;  

 

    return i == n ? -1 : i;  

}  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Performance 
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Environment Version 2 With Sentinel Time Savings Ratio 

java 1.5.0_19 4.568 4.261 7% 1.07:1 

gcc 4.0.1 -O 2.709 2.258 17% 1.20:1 

gcc 4.0.1 -O2 2.708 1.882 31% 1.44:1 

gcc 4.0.1 -O3 2.332 1.881 19% 1.24:1 

gcc 4.0.1 11.227 9.405 16% 1.19:1 

times in seconds for 100000 calls, n = 10000, worst case 

Apple PowerBook G4 
PowerPC 7447B 1.67 GHz, 64 KB L1, 512 KB L2, 1 GB RAM 

Mac OS X 10.4.11  

Java Tuning 

!  String concatenation: 

◦  how to append strings efficiently? 

!  String words[] = {  

    “these”,  

    “are”,  

    “some”,  

    “test”,  

    “words”,  

    …  

};
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Java Tuning 
!  // String plus operator  

 

String answer = “”;  

 

for (String s : words) {  

    answer += s;  

}


!  // using StringBuffer (synchronized)  

 

StringBuffer buffer = new StringBuffer( “” );  

 

for (String s : words) {  

    buffer.append( s );  

}  

String answer = buffer.toString();


!  // or use StringBuilder (un-synchronized)  

 
41


Performance 
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Environment String + StringBuffer StringBuilder 

java 1.5.0_19 3.286 1.585 1.314 

times in seconds for 1000000 trials 

Apple PowerBook G4 
PowerPC 7447B 1.67 GHz, 64 KB L1, 512 KB L2, 1 GB RAM 

Mac OS X 10.4.11  

use StringBuffer or StringBuilder when 
appending lots of Strings 



Java String + versus StringBuilder 
!  …  

new #4; // class StringBuilder  

…  

invokespecial #5; // method StringBuilder init  

…  

invokevirtual #6; // method StringBuilder append  

…  

invokevirtual #6; // method StringBuilder append  

invokevirtual #7; // method StringBuilder toString  

…


!  …  

invokevirtual #6; // method StringBuilder append  

…
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Java Tuning 

! Accessing variables: 

◦  local variables in a method are faster to 
access and manipulate than static or instance 
variables in the class 

!  public class Bar {  

    private int instanceVar;  

    private static int staticVar;  

 

    public void access() {  

        int localVar;  

        …  

    }  

}
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Performance 
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Environment instance static local 

java 1.5.0_19 6.086 5.625 2.522 

times in seconds for 1 billion changes to int variable 

Apple PowerBook G4 
PowerPC 7447B 1.67 GHz, 64 KB L1, 512 KB L2, 1 GB RAM 

Mac OS X 10.4.11  

Java virtual machine is stack-based, 
and optimized to access stack data 

Java Tuning 

!  Inlining methods: 

◦  compiler replaces a method call with the 
actual body 
 

!  public class Counter {  

    …  

    public final int getCount() {  

        …  

    }  

    …  

}


!  …  

Counter counter = new Counter();  

int c = counter.getCount();  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useful for small methods, 
where the call overhead is 

relatively high compared to 
the work done 

but only 
applicable if 

compiler knows 
what replacement 

code to use 
 

i.e., no dynamic 

binding happening 



Java Tuning 

!  Inlining methods: 

◦  static, final, or private methods can potentially 
be inlined since they are statically bound at 
compile time (no potential overriding) 

◦  however, Java compilers may actually do 
nothing to inline these methods, leaving the 
JIT to optimize method calls 
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Java Tuning 

! Traversals: 

◦  how to traverse elements of an 
ArrayList<T>


!  // version 1  

Enumeration e = Collections.enumeration( a );  

while (e.hasMoreElements()) {  

    // process object e.nextElement()  

}


!  // version 2  

ListIterator<T> iter = a.listIterator();  

while (iter.hasNext()) {  

    // process object iter.next()  

}
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Java Tuning 
!  // version 3  

Iterator<T> iter = a.iterator();  

while (iter.hasNext()) {  

    // process object iter.next()  

}


!  // version 4  

for (T each : a) {  

    // process object each  

}


!  // version 5  

int n = a.size();  

for (int i = 0; i < n; i++) {  

    // process object a.get( i )  

}
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Performance 
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Enumeration List Iterator Iterator for each for get( i ) 

java 1.5.0_19 11.464 10.142 9.164 9.137 3.387 

times in seconds for 10000 traversals of 10000 element ArrayList 

Apple PowerBook G4 
PowerPC 7447B 1.67 GHz, 64 KB L1, 512 KB L2, 1 GB RAM 

Mac OS X 10.4.11  

according to the bytecode, the 
for each loop is just syntactic sugar 

for an Iterator 



Java Tuning 

! Minimize the cost of object creation: 

◦  use “lazy evaluation” 

"  not creating an object until you have to 

◦  be wary of deep inheritance hierarchies 

"  many cascaded constructors 
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More Information 

! Books: 

◦ Code Complete 

"  S. McConnell 

"  Microsoft Press, 2004 

◦ Writing Efficient Programs 

"  J. Bentley 

"  Prentice-Hall, 1982 
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More Information 

! Links: 

◦  Java Performance Tuning 

"  http://www.javaperformancetuning.com/ 
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