
OPTIMIZATION

Ken Wong
Department of Computing Science
University of Alberta

CODE TUNING

3

Performance

! Goal:

◦  another non-functional requirement (quality)

"  besides correctness, flexibility, maintainability, etc.

◦  running more efficiently

"  less time or less space or less power

"  no change in functional behavior

◦  often works against other qualities

"  make sure of correctness first

4

Software Optimization

! Quote:

◦  “Premature optimization is the root of all
evil.”
— Donald Knuth

5

Software Optimization

! Quotes:

◦  “First Rule of Program Optimization:
Don’t do it.”

◦  “Second Rule of Program Optimization:
Don’t do it yet.”

— Michael A. Jackson

6

Optimization Levels

! Requirements:

◦ what is acceptable performance?

◦  can the problem be simplified?

◦  how much data as input?

◦  how many results to generate?

"  in memory or on disk or over the network, etc.

◦  e.g., combinatorial generation

"  array of size n, but n! permutations

7

Optimization Levels

! High-level design:

◦  how does generality affect performance?

◦  hinders through indirection

◦  improves by easier replacement of slow parts

8

Optimization Levels

! Detailed design:

◦  consider time and space complexity of data
structures and algorithms

◦  it depends (what algorithms and size of n)

"  e.g., quicksort slower than insertion sort for small n

9

Algorithm A has
O(n log n)

time complexity

Algorithm B has
O(n2)

time complexity

which is faster in practice?

a1 n log n + a2 n + a3 b1 n
2 + b2 n + b3

Optimization Levels

! Detailed design:

◦ may trade off time and space

"  more space / less time or less space / more time

◦  e.g., table lookup

"  consult table of pre-computed results rather than a
complex calculation each time

◦  e.g., caching or memoization

"  store fetched or computed values for later fast
retrieval and reuse

10

Memoization Example
!  // fibonacci numbers 1, 1, 2, 3, 5, 8, …  

public static int fib(int n) { // no memoization  
 if (n == 0 || n == 1) {  
 return 1;  
 } else {  
 return fib(n-1) + fib(n-2);  
 }  
}

!  public static int fib(int n) { // with memoization  
 if (result[n] == 0) { // result not yet known  
 if (n == 0 || n == 1) {  
 result[n] = 1;  
 } else {  
 result[n] = fib(n-1) + fib(n-2);  
 }  
 }  
 result result[n];  
}
 11

Optimization Levels

! Detailed design:

◦ may choose algorithms with relatively fewer
expensive operations

◦  e.g., reducing multiplications

12

how many multiplications to compute?

evaluating a polynomial
y = a4 x

4 + a3 x
3 + a2 x

2 + a1 x + a0

Horner’s method
y = (((a4 x + a3) x + a2) x + a1) x + a0

Optimization Levels

! Operating system and libraries:

◦  slow routines, input/output

◦  e.g., memory allocation in heap (C malloc)

14

C Memory Allocation Example
!  typedef struct Node { /* linked list node */  

 int info;  

 …  

 struct Node *link;  

} Node;  

!  #include <stdlib.h>  

 

/* allocating a list node */  

Node *node = malloc(sizeof(Node));  

…  

!  …  

/* freeing a list node */  

free(node);

15

Using a Free List
!  Node *freenodes;  

…  

freenodes = (Node *)0;

!  /* allocating a list node */  

Node *n;  

if (freenodes == (Node *)0) {  

 node = (Node *)malloc(sizeof(Node));  

} else {  

 node = freenodes;  

 freenodes = node->link;  

}  

…

!  /* “freeing” a list node */  

node->link = freenodes;  

freenodes = node;

16

Optimization Levels

! Optimizing compilers:

◦  let a “good compiler” optimize the code

◦  e.g., constant folding/propagation

"  solve constant expressions at compile time

◦  e.g., common subexpression elimination

"  solve common subexpressions once

17

Optimization Levels

! Optimizing compilers:

◦  e.g., loop invariant code motion

"  move invariant parts of a loop outside the loop

◦  e.g., strength reduction

"  replace costly operations with cheaper ones

18

Costly Replacement

y = x * 2;
 y = x + x;

y = x * 8;
 y = x << 3;

y = x / 4;
 y = x >> 2;

y = x * 31;
 y = (x << 5) – x;

y = x * 9;
 y = (x << 3) + x;

integer x, y

Loop Strength Reduction
!  int c = 9;  

for (int i = 0; i < n; i++) {  

 a[i] = i * c;  

}

!  /* replace multiplication with additions */  

 

int c = 9;  

int t = 0;  

for (int i = 0; i < n; i++) {  

 a[i] = t;  

 t += c;  

}  

19

Optimizing Loops (Before)
!  // insert t in a  

// sorted linked list  

 

p = header;  

q = p.link;  

 

while (q.info <= t.info) {  

 p = q;  

 q = q.link;  

}  

 

t.link = q;  

p.link = t;

20

t

header

p q

2 assignments
per comparison

Optimizing Loops (After)
!  p = header;  

for (;;) {  

 q = p.link;  

 if (q.info <= t.info) {  

 t.link = q;  

 p.link = t;  

 break;  

 }  

 p = q.link;  

 if (p.info <= t.info) {  

 t.link = p;  

 q.link = t;  

 break;  

 }  

}

21

1 assignment
per comparison

Optimizing Loops
!  i = 0;  

while (i < n) {  

 a[i] = i;  

 i++;  

}

!  // unrolled once  

 

i = 0;  

while (i < n-1) {  

 a[i] = i;  

 a[i+1] = i+1;  

 i += 2;  

}  

if (i < n) {  

 a[n-1] = n-1;  

}  

22

reducing
loop housekeeping

by loop unrolling

Optimization Levels

! Optimizing compilers:

◦  some static compilers can use profiling data

◦  e.g., reorder if-then-else tests by frequency

"  tests that are more likely to be true come earlier

◦  just-in-time compilation in virtual machine

"  converts interpreted bytecode to natively executed
binary code at run time

"  JIT itself takes time and space, however

23

Optimization Levels

! Assembly language:

◦ write slow parts in handcrafted assembly code

◦  but very hard to beat an optimizing compiler

◦  for portability reasons, compilers might avoid
using certain machine instructions
(even if more efficient)

◦  handcrafted assembly code can use these
instructions

24

Optimization Levels

! Hardware:

◦  “throw more hardware at the problem”

◦  understand the performance characteristics of
the hardware you have

◦  e.g., input/output, cache, processing cores, etc.

25

Avoid Superstitions

! Myth:

◦  “shorter code is faster code”

"  fewer statements in source code
does not mean fewer executed instructions

26

for (i = 0; i < 10; i++) {  

 a[i] = i;  

}

a[0] = 0;  

a[1] = 1;  

a[2] = 2;  

a[3] = 3;  

a[4] = 4;  

a[5] = 5;  

a[6] = 6;  

a[7] = 7;  

a[8] = 8;  

a[9] = 9;

performance factor
of fully unrolled loop?

Performance

27

Environment for Loop Straightline Time Savings Ratio

java 1.5.0_19 5.838 2.957 49% 2:1

gcc 4.0.1 -O 2.826 1.564 45% 1.8:1

gcc 4.0.1 -O2 2.345 1.563 33% 1.5:1

gcc 4.0.1 -O3 1.503 0.631 58% 2.4:1

perl 5.10.1 694.671 300.776 57% 2.3:1

gcc 4.0.1 12.207 4.364 64% 2.8:1

times in seconds for 100 million trials

Apple PowerBook G4
PowerPC 7447B 1.67 GHz, 64 KB L1, 512 KB L2, 1 GB RAM

Mac OS X 10.4.11

Performance

28

/* C code:  

 * t and s point at null terminated char arrays  

 */  

while (*t++ = *s++);  

 

 

while (*s != ‘\0’) {  

 *t = *s;  

 t++;  

 s++;  

}  

*t = ‘\0’;  

Compiler Version 1 Version 2 Time Savings Ratio

gcc 4.0.1 32.944 27.714 16% 1.19:1

gcc 4.0.1 -O 5.651 4.509 20% 1.25:1

gcc 4.0.1 -O2 4.449 4.449 0% 1.00:1

times in seconds for 100 million copies of 20 character strings

gcc 4.0.1 -O3 4.208 4.389 –4% 0.96:1

or just use strcpy()

Avoid Superstitions

! Myth:

◦  certain operations are typically
faster than others

"  careful with “typically” or rules of thumb

◦ measure (and re-measure) effect after changes

"  time the operations to see actual performance?

29

Benchmarking Pitfalls
!  #define LIMIT 100000000  

 

int main() {  

 double x, y, z;  

 

 x = 5.0;  

 y = 7.0;  

 

 int i;  

 for (i = 0; i < LIMIT; i++) {  

 // floating-point multiplication test  

 z = x * y;  

 }  

}

30

with constant folding,
the compiler knows that x * y is 35,

so no actual multiplication at run time

with loop invariant code motion,
the compiler knows that z = 35 can

be moved outside the loop,
making the loop empty

since z is not used,
the compiler does not even

assign z

Avoid Superstitions

! Myth:

◦  optimize as you write the code

"  hard to optimize before the code is correct

"  micro-optimizations may have insignificant benefit

"  detracts from other quality concerns

◦  don’t optimize indiscriminately

31

Bottlenecks

! Observation:

◦  80% of the execution time resides in about
20% of a program’s routines
— Barry Boehm

◦  Pareto principle (80/20 rule)

32

Bottlenecks

! Quote:

◦  “Bottlenecks occur in surprising places, so
don’t try to second guess and put in a speed
hack until you have proven that’s where the
bottleneck is.”

— Rob Pike

33

Bottlenecks

! Huge semantic gap:

◦  programmers are very poor at guessing the
cause of bottlenecks

34

language

libraries

compilers

virtual machine

operating system

hardware

performance depends
on many layers

Bottlenecks

! Profilers:

◦  reports performance hotspots

"  time spent in each routine

"  frequency counts of each routine

"  frequency counts of each statement

"  heap usage

35

Bottlenecks

! Code tuning:

◦ what works well in one environment may not
work well in another (non-portable)

◦  code tuning itself might defeat compiler
optimizations

36

Code Tuning Example
!  // given array a, currently with n elements,  

// return index of x, otherwise return -1  

 

public static int indexOf(int[] a, int n, int x) {  

 int answer = -1;  

 for (int i = 0; i < n; i++) {  

 if (a[i] == x) answer = i;  

 }  

 return answer;  

}

!  // version 2  

public static int indexOf(int[] a, int n, int x) {  

 for (int i = 0; i < n; i++) {  

 if (a[i] == x) return i;  

 }  

 return -1;  

}  

 37

reduce to one comparison per
iteration?

should stop when you know the
answer

Using a Sentinel
!  public static int indexOf(int[] a, int n, int x) {  

 a[n] = x;  

 int i = 0;  

 while (a[i] != x) i++;  

 

 return i == n ? -1 : i;  

}  

38

Performance

39

Environment Version 2 With Sentinel Time Savings Ratio

java 1.5.0_19 4.568 4.261 7% 1.07:1

gcc 4.0.1 -O 2.709 2.258 17% 1.20:1

gcc 4.0.1 -O2 2.708 1.882 31% 1.44:1

gcc 4.0.1 -O3 2.332 1.881 19% 1.24:1

gcc 4.0.1 11.227 9.405 16% 1.19:1

times in seconds for 100000 calls, n = 10000, worst case

Apple PowerBook G4
PowerPC 7447B 1.67 GHz, 64 KB L1, 512 KB L2, 1 GB RAM

Mac OS X 10.4.11

Java Tuning

!  String concatenation:

◦  how to append strings efficiently?

!  String words[] = {  

 “these”,  

 “are”,  

 “some”,  

 “test”,  

 “words”,  

 …  

};

40

Java Tuning
!  // String plus operator  

 

String answer = “”;  

 

for (String s : words) {  

 answer += s;  

}

!  // using StringBuffer (synchronized)  

 

StringBuffer buffer = new StringBuffer(“”);  

 

for (String s : words) {  

 buffer.append(s);  

}  

String answer = buffer.toString();

!  // or use StringBuilder (un-synchronized)  

 
41

Performance

42

Environment String + StringBuffer StringBuilder

java 1.5.0_19 3.286 1.585 1.314

times in seconds for 1000000 trials

Apple PowerBook G4
PowerPC 7447B 1.67 GHz, 64 KB L1, 512 KB L2, 1 GB RAM

Mac OS X 10.4.11

use StringBuffer or StringBuilder when
appending lots of Strings

Java String + versus StringBuilder
!  …  

new #4; // class StringBuilder  

…  

invokespecial #5; // method StringBuilder init  

…  

invokevirtual #6; // method StringBuilder append  

…  

invokevirtual #6; // method StringBuilder append  

invokevirtual #7; // method StringBuilder toString  

…

!  …  

invokevirtual #6; // method StringBuilder append  

…

43

Java Tuning

! Accessing variables:

◦  local variables in a method are faster to
access and manipulate than static or instance
variables in the class

!  public class Bar {  

 private int instanceVar;  

 private static int staticVar;  

 

 public void access() {  

 int localVar;  

 …  

 }  

}

44

Performance

45

Environment instance static local

java 1.5.0_19 6.086 5.625 2.522

times in seconds for 1 billion changes to int variable

Apple PowerBook G4
PowerPC 7447B 1.67 GHz, 64 KB L1, 512 KB L2, 1 GB RAM

Mac OS X 10.4.11

Java virtual machine is stack-based,
and optimized to access stack data

Java Tuning

!  Inlining methods:

◦  compiler replaces a method call with the
actual body

!  public class Counter {  

 …  

 public final int getCount() {  

 …  

 }  

 …  

}

!  …  

Counter counter = new Counter();  

int c = counter.getCount();  

 46

useful for small methods,
where the call overhead is

relatively high compared to
the work done

but only
applicable if

compiler knows
what replacement

code to use

i.e., no dynamic

binding happening

Java Tuning

!  Inlining methods:

◦  static, final, or private methods can potentially
be inlined since they are statically bound at
compile time (no potential overriding)

◦  however, Java compilers may actually do
nothing to inline these methods, leaving the
JIT to optimize method calls

47

Java Tuning

! Traversals:

◦  how to traverse elements of an
ArrayList<T>

!  // version 1  

Enumeration e = Collections.enumeration(a);  

while (e.hasMoreElements()) {  

 // process object e.nextElement()  

}

!  // version 2  

ListIterator<T> iter = a.listIterator();  

while (iter.hasNext()) {  

 // process object iter.next()  

}

48

Java Tuning
!  // version 3  

Iterator<T> iter = a.iterator();  

while (iter.hasNext()) {  

 // process object iter.next()  

}

!  // version 4  

for (T each : a) {  

 // process object each  

}

!  // version 5  

int n = a.size();  

for (int i = 0; i < n; i++) {  

 // process object a.get(i)  

}

49

Performance

50

Enumeration List Iterator Iterator for each for get(i)

java 1.5.0_19 11.464 10.142 9.164 9.137 3.387

times in seconds for 10000 traversals of 10000 element ArrayList

Apple PowerBook G4
PowerPC 7447B 1.67 GHz, 64 KB L1, 512 KB L2, 1 GB RAM

Mac OS X 10.4.11

according to the bytecode, the
for each loop is just syntactic sugar

for an Iterator

Java Tuning

! Minimize the cost of object creation:

◦  use “lazy evaluation”

"  not creating an object until you have to

◦  be wary of deep inheritance hierarchies

"  many cascaded constructors

51

More Information

! Books:

◦ Code Complete

"  S. McConnell

"  Microsoft Press, 2004

◦ Writing Efficient Programs

"  J. Bentley

"  Prentice-Hall, 1982

52

More Information

! Links:

◦  Java Performance Tuning

"  http://www.javaperformancetuning.com/

53

