
Android Fragments Notes + Example

IMPORTANT: You are not required to use Fragments for your assignments or

project. They are sometimes more trouble than they are worth, but they are worth

learning about and a good practice in Android because they allow for reuse of UI

components. Also, some useful UI components like DatePicker and TimePicker in

Android are implemented using Fragments.

What do we do in Android if we want UI components

that are reusable?

For example, take a look at the Android Gmail app. When you’re using an Android

phone, the first screen that shows up is the inbox (picture on the left). When you’re on a

tablet, we see the exact same inbox interface in the middle but with other additional UI

components. However, if we were to implement the inbox UI using an Activity, we

would not be able to reuse it for the tablet layout, because an Activity represents

an entire screen.

This is where Fragments come in. You can think of them as “mini Activities”, except the

difference is that you can define a Fragment once and use it in multiple Activities.

Fragments can only be shown when it is hosted by an Activity, and you can also

display multiple Fragments in the same Activity.

Two examples of Fragments are Android’s built in DatePicker and TimePicker shown

below. They allow you to choose a date and time using a fancy looking UI.

Why did the Android developers decide to make these a Fragment instead of an

Activity? A major reason is that it would be poor UX design if you had to open up a

new screen every time you wanted to select a date or time. Also, the DatePicker and

TimePicker widgets do not even fill the whole screen, so they do not require an Activity

on their own. To use these in your apps, you simply need to start up the Fragment from

an Activity send the selected date or time into the Activity.

EXERCISE
To demonstrate usage of Fragments and how to send data from a Fragment back

to its hosting Activity, we’ll make an app that has a single Activity with a Button

and a TextView. When you press the Button, the Activity opens up a

DialogFragment which has an EditText. When you type something into the

EditText and press OK, the text will be shown in the Activity’s TextView.

Start a new empty Android project. Make sure the Language selected is “Java”

First, let’s update the MainActivity’s layout file to use a LinearLayout for its

ViewGroup, and also add a Button and a TextView.

activity_main.xml

Make a new layout file called fragment_edit_text. This will be the layout that our

Fragment uses.

Add an EditText to the fragment_edit_text.xml.

Next, let’s make the Java class for the DialogFragment. Name it

EditTextDialogFragment and make it extend DialogFragment.

Since we’re using a DialogFragment, we want to override the “onCreateDialog”

method.

From this method, we return a Dialog which is what we want the Activity to display when

the button is clicked. First, we need to inflate the Fragment layout file we just made.

“Inflating” the layout file gives us the actual View object. In this case, the View that is

returned from .inflate() will be the root View of fragment_edit_text.xml, which is

the LinearLayout.

Also, get a reference to the EditText. This will allow us to pull the text out of it later and

send it to the Activity.

Next, we use a class called AlertDialog.Builder to build the actual Dialog. First we

make a builder, then call specific methods on the builder to edit parts of the Dialog.

Last, make sure to call .create() on the Builder to actually get an instance of the Dialog.

We return this newly created Dialog object.

In MainActivity, add a View.OnClickListener to the Button, and here we will open

up the DialogFragment when it is clicked.

The way that an Activity opens up a Fragment is using a “FragmentManager”.

Usually, the Activity must specify what Fragment it wants opened up, and also a tag

(just a String) for the FragmentManager to identify the Fragment later, since an Activity

can have multiple Fragments.

However, the code is a bit different with DialogFragments. First, we make a new

instance of the EditTextDialogFragment class we just created, and we call .show() on it.

We provide the FragmentManager and tag to the show method.

Run the app and ensure that the dialog opens when the button is pressed!

It’s looking great. However, the EditText doesn’t do anything even after pressing OK.

We want to update the TextView in MainActivity with whatever the user enters in

the DialogFragment’s EditText.

One way we can send the text from the Fragment to the Activity is the following:

Get a reference to the TextView in MainActivity, provide a method updateTextView that

takes in a String, and sets the String onto the TextView.

In EditTextDialogFragment, add a DialogInterface.onClickListener for the “OK” button.

(this is extremely similar to View.OnClickListener). We can call getActivity(), cast it to

a type of MainActivity, and send in the EditText’s text.

Run your app and open the DialogFragment. Input some text and press OK - the

Activity’s TextView should now be updated!

This works, but unfortunately if we implement it this way, it destroys the whole

“reusability” of Fragments.

As we can see above, the Fragment depends on its hosting Activity being of type

MainActivity. What if we wanted to host this DialogFragment in another Activity,

that isn’t of type MainActivity? It’s now extremely difficult to do that.

We can see that this would be an issue if Android implemented their DatePicker or

TimePicker fragments in this way. No one would be able to use them and you would be

forced to start up another Activity just to select a date or time.

We fix this by using an interface. First, define an interface on the Fragment.

Now, any Activity that wants to host this Fragment must implement this interface.

Update your MainActivity to implement the interface.

Since our MainActivity already has the updateTextView method, the Activity doesn’t

violate the interface and Android Studio shouldn’t complain.

Now, the key part is that there is a Fragment lifecycle method called “onAttach”.

This method gets called when the Fragment is being attached to its hosting

Activity. The method takes in a Context, which is the hosting Activity (in our case,

it’s MainActivity). Here is where we get a reference to the hosting activity and store it in

a type of EditTextDialogListener. This works because MainActivity implements

EditTextDialogListener, so we can refer to it using a variable of that type.

Now, in the onClick method of the Ok button, we call the updateTextView method

on the interface instead.

Notice how we never reference MainActivity specifically. Our Fragment is now

reusable and can be hosted/used by different Activities! Rerun the app and it

should work exactly like it did before.

It’s interesting to note that our implementation above to send data from the Fragment to

the Activity using the interface above is actually how Android’s DatePicker and

TimePicker DialogFragments are implemented. When you want to get the date/time

back from them, you must implement their OnDateSetListener or OnTimeSetListener to

get the result back.

