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Introduction
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Introduction

Core

Formal Domain Data Represenations
Economical and Unambiguous
What you would serialize

Informal Domain Data Representations
May contain redudant data, non-canonical forms, etc.
Think “non-normalized”

Joshua Charles Campbell (Department of Computing Science University of Alberta)MVC and Friends Febuary 2014 4 / 32



Introduction

Core cont.

Data representations about the fundamental
“things” the application is working with
Logic enforcing data constraints

Prevent data representations which are invalid in the
domain
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Introduction

Core cont.

Logic relating multiple core data representations
Model Evolution
Converting to other fundamental representations

This forms the Functional Core in the Arch Model
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Introduction

Core Adaptor

Logic and data provided for the use of any/multiple
user interfaces
Connects user interfaces to the core using the
core data representations
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Introduction

Dialogue Component

All of the UI-specific but toolkit-independent data
represenations and logic
May contain all kinds of stuff that the core wouldn’t

Application States, feedback for the user, redundant data
forms
Sequencing and consistency logic
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Introduction

Dialogue Component

Gets core data representations from the core /
core adapter
Sends toolkit-independent data
representations to the presenter
Fowler calls this the presentation model
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Introduction

Presenter

Format data to be passed to the toolkit library
Format data in a toolkit-independent form for the
dialogue
Interfaces the toolkit to dialogue
Presentation Component of the Arch Model
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Introduction

The Interaction Toolkit

Knows nothing about the model or the user interface
Checkboxes, scrollbars, windows, layouts, picture
boxes, etc.
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Modern MVC

Model-View-Controller

Every View must have a reference to a controller and
a model
Every Controller must have a reference to a model
Multiple View-Controller pairs may share a single
model simultaneously
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Modern MVC

Active Model MVC

Recommended
The model has a reference to views needing update
aka Observer Synchronization
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Modern MVC

Active Model MVC

<<Model>>

OurModel
+Fundamental Domain Data
+Observers

+Evolve()

<<View, Observer>>

MyView
+View State
+Toolkit State
+Controller
+Model

+Notify Updated()
+Toolkit Callbacks()
+Formatting Routine()

<<Controller>>

MyController
+Controller State
+Model

+Make Change To Model()

presenter
1

dialogue
0..1

dialogue
0..*

core
1

dialogue
0..*

core
1

<<View, Observer>>

TheirView
+View State
+Toolkit State
+Controller
+Model

+Notify Updated()
+Toolkit Callbacks()
+Formatting Routine()

<<Controller>>

TheirController
+Controller State

+Make Change To Model()

1

0..1

0..*

1

0..*

1

Two-way
Aggregation

Abstract classes,
interfaces, etc. omitted
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Modern MVC

Passive Model MVC

Not recommended
The controller has a reference to views needing
update
aka Flow Synchronization
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Modern MVC

Passive Model MVC

<<Model>>

OurModel
+Fundamental Domain Data

+Evolve()

<<View>>

MyView
+View State
+Toolkit State
+Controller
+Model

+Notify Updated()
+Toolkit Callbacks()
+Formatting Routine()

<<Controller>>

MyController
+Controller State
+Model
+View

+Make Change To Model()

presenter
1 dialogue

0..1

dialogue
0..*

core
1

dialogue
0..*

core
1
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Modern MVC

Model-View-Controller

According to most modern sources:
Model contains the core, core adapter

logic to enforce consistency
logic to enforce sequencing

Controller contains presenter and dialogue input
All logic that interprets user actions as modifications for
the model

View has presenter and dialogue output
All logic that makes the model ready for the toolkit

We get the actual toolkit from someone else
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Modern MVC

Model-View-Controller cont.

Model must support
multiple, independent view-controller pairs
which are completely ignorant of each-other
possibly at the same time

Problem: leads to duplicated dialogue code
Ex: view state
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Modern MVC

Presentation-Model MVC

MVC except:
Split the view and controller into toolkit-specific and
toolkit-independent parts
Fixes duplication problem
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Modern MVC

Presentation-Model MVC

<<Model>>

OurModel
+Fundamental Domain Data
+Observers

+Evolve()

<<View>>

MyView
+Toolkit State
+Controller

+Set Toolkit State()
+Toolkit Callbacks()

<<Controller>>

MyController
+Controller State
+Model

+Make Change To Model()

presenter
1

dialogue
0..1

dialogue
0..*

core
1..*

dialogue
0..*core

1

<<Presentation Model, Observer>>

MyPresenter
+View State
+Model
+View

+Notify Updated()
+Formatting Routine()

dialogue
1

presenter
1..*
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Related Patterns

MVC “Classic”

MVC ala Smalltalk 80
Like MVC but V-C pairs implement the toolkit also
V-C pairs contain

The toolkit code & data
Toolkit-specific code & data
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Related Patterns

MVC “Classic” cont.

Model contains
The Dialogue
All of the core and core adapter
Application state, sequencing, consistency, feedback for
the user, etc.
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Related Patterns

Passive-View MVC

Model and View completely disconnected
View is as light and generic as possible
Controller connects the Model to the View
all dialogue is in the controller

All application-specific logic

what Ruby on Rails thinks of as MVC
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Related Patterns

Passive-View MVC

<<Model>>

OurModel
+Fundamental Domain Data
+Observers

+Evolve()

<<View>>

MyView
+Toolkit State
+Controller

+Formatting Routine()

<<Controller, Observer>>

MyController
+Application State
+Model
+View

+Make Change To Model()
+Notify Updated()
+View Callback()

presenter
1

dialogue
1

dialogue
0..*

core
1
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Related Patterns

Interface-Control-Model

The model is the core
Plus a list of things to notify on change

The control layer consists of the dialogue
Much app code goes here

The interface layer is toolkit-specific
Unlike View, can recieve commands in order to pass
them to the control layer in a toolkit-independent way
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Related Patterns

Model-View-Presenter

Much like Passive View
Adds: Commands, selections and interactors
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Related Patterns

Presentation-Abstraction-Control

Everything is connected via a heirarchy of controllers
Models are connected to other models via the
controller
Views are connected to other views via the controller
Two views or controllers using the same model at the
same time is disallowed
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Related Patterns

Presentation-Abstraction-Control

Views are toolkit-specific presenters and toolkits
only
Models are core only
All dialogue is in the controller

Including output, display, formatting, etc. logic

Like a bunch of passive-view MVCs connected by
their controllers

instead of their models

what Stanford University of as MVC
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Related Patterns

Presentation-Abstraction-Control

<<Model>>

MyModel
+Fundamental Domain Data
+Observers

+Evolve()

<<View>>

MyView
+Toolkit State
+Controller

+Formatting Routine()

<<Controller>>

MyController
+Application State
+Model
+View
+OtherController

+Make Change To Model()
+Notify Updated()
+View Callback()

presenter
1

dialogue
1

dialogue
1

core
1

<<Model>>

TheirModel
+Fundamental Domain Data
+Observers

+Evolve()

<<View>>

TheirView
+Toolkit State
+Controller

+Formatting Routine()

<<Controller>>

TheirController
+Application State
+Model
+View
+OtherController

+Make Change To Model()
+Notify Updated()
+View Callback()

presenter
1

dialogue
1

dialogue
1
core
1
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Related Patterns

Conclusion

MVC often refers not to MVC but to
Passive-view, PAC, ICM, or other systems where
a lot of logic that would be in the model or view in MVC
is completely inside the “controller”

MVC almost never refers to the original,
pixels-and-cursors MVC
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