
MVC and Friends

Joshua Charles Campbell

Department of Computing Science
University of Alberta

Febuary 2014

Joshua Charles Campbell (Department of Computing Science University of Alberta)MVC and Friends Febuary 2014 1 / 32



Outline

1 Introduction

2 Modern MVC

3 Related Patterns

Joshua Charles Campbell (Department of Computing Science University of Alberta)MVC and Friends Febuary 2014 2 / 32



Introduction

Arch Model

Core Layer

Core Adapter Layer

Dialogue Layer

Presentation Layer

Toolkit Layer
Toolkit Representation

UI Representation

Core Representation

Core Representation

Toolkit
Specific
UI
Specific

Logic Data 

UI
System

The Arch Model

Joshua Charles Campbell (Department of Computing Science University of Alberta)MVC and Friends Febuary 2014 3 / 32



Introduction

Core

Formal Domain Data Represenations
Economical and Unambiguous
What you would serialize

Informal Domain Data Representations
May contain redudant data, non-canonical forms, etc.
Think “non-normalized”

Joshua Charles Campbell (Department of Computing Science University of Alberta)MVC and Friends Febuary 2014 4 / 32



Introduction

Core cont.

Data representations about the fundamental
“things” the application is working with
Logic enforcing data constraints

Prevent data representations which are invalid in the
domain

Joshua Charles Campbell (Department of Computing Science University of Alberta)MVC and Friends Febuary 2014 5 / 32



Introduction

Core cont.

Logic relating multiple core data representations
Model Evolution
Converting to other fundamental representations

This forms the Functional Core in the Arch Model

Joshua Charles Campbell (Department of Computing Science University of Alberta)MVC and Friends Febuary 2014 6 / 32



Introduction

Core Adaptor

Logic and data provided for the use of any/multiple
user interfaces
Connects user interfaces to the core using the
core data representations

Joshua Charles Campbell (Department of Computing Science University of Alberta)MVC and Friends Febuary 2014 7 / 32



Introduction

Dialogue Component

All of the UI-specific but toolkit-independent data
represenations and logic
May contain all kinds of stuff that the core wouldn’t

Application States, feedback for the user, redundant data
forms
Sequencing and consistency logic

Joshua Charles Campbell (Department of Computing Science University of Alberta)MVC and Friends Febuary 2014 8 / 32



Introduction

Dialogue Component

Gets core data representations from the core /
core adapter
Sends toolkit-independent data
representations to the presenter
Fowler calls this the presentation model

Joshua Charles Campbell (Department of Computing Science University of Alberta)MVC and Friends Febuary 2014 9 / 32



Introduction

Presenter

Format data to be passed to the toolkit library
Format data in a toolkit-independent form for the
dialogue
Interfaces the toolkit to dialogue
Presentation Component of the Arch Model

Joshua Charles Campbell (Department of Computing Science University of Alberta)MVC and Friends Febuary 2014 10 / 32



Introduction

The Interaction Toolkit

Knows nothing about the model or the user interface
Checkboxes, scrollbars, windows, layouts, picture
boxes, etc.

Joshua Charles Campbell (Department of Computing Science University of Alberta)MVC and Friends Febuary 2014 11 / 32



Modern MVC

Model-View-Controller

Every View must have a reference to a controller and
a model
Every Controller must have a reference to a model
Multiple View-Controller pairs may share a single
model simultaneously

Joshua Charles Campbell (Department of Computing Science University of Alberta)MVC and Friends Febuary 2014 12 / 32



Modern MVC

Active Model MVC

Recommended
The model has a reference to views needing update
aka Observer Synchronization

Joshua Charles Campbell (Department of Computing Science University of Alberta)MVC and Friends Febuary 2014 13 / 32



Modern MVC

Active Model MVC

<<Model>>

OurModel
+Fundamental Domain Data
+Observers

+Evolve()

<<View, Observer>>

MyView
+View State
+Toolkit State
+Controller
+Model

+Notify Updated()
+Toolkit Callbacks()
+Formatting Routine()

<<Controller>>

MyController
+Controller State
+Model

+Make Change To Model()

presenter
1

dialogue
0..1

dialogue
0..*

core
1

dialogue
0..*

core
1

<<View, Observer>>

TheirView
+View State
+Toolkit State
+Controller
+Model

+Notify Updated()
+Toolkit Callbacks()
+Formatting Routine()

<<Controller>>

TheirController
+Controller State

+Make Change To Model()

1

0..1

0..*

1

0..*

1

Two-way
Aggregation

Abstract classes,
interfaces, etc. omitted

Joshua Charles Campbell (Department of Computing Science University of Alberta)MVC and Friends Febuary 2014 14 / 32



Modern MVC

Passive Model MVC

Not recommended
The controller has a reference to views needing
update
aka Flow Synchronization

Joshua Charles Campbell (Department of Computing Science University of Alberta)MVC and Friends Febuary 2014 15 / 32



Modern MVC

Passive Model MVC

<<Model>>

OurModel
+Fundamental Domain Data

+Evolve()

<<View>>

MyView
+View State
+Toolkit State
+Controller
+Model

+Notify Updated()
+Toolkit Callbacks()
+Formatting Routine()

<<Controller>>

MyController
+Controller State
+Model
+View

+Make Change To Model()

presenter
1 dialogue

0..1

dialogue
0..*

core
1

dialogue
0..*

core
1

Joshua Charles Campbell (Department of Computing Science University of Alberta)MVC and Friends Febuary 2014 16 / 32



Modern MVC

Model-View-Controller

According to most modern sources:
Model contains the core, core adapter

logic to enforce consistency
logic to enforce sequencing

Controller contains presenter and dialogue input
All logic that interprets user actions as modifications for
the model

View has presenter and dialogue output
All logic that makes the model ready for the toolkit

We get the actual toolkit from someone else

Joshua Charles Campbell (Department of Computing Science University of Alberta)MVC and Friends Febuary 2014 17 / 32



Modern MVC

Model-View-Controller cont.

Model must support
multiple, independent view-controller pairs
which are completely ignorant of each-other
possibly at the same time

Problem: leads to duplicated dialogue code
Ex: view state

Joshua Charles Campbell (Department of Computing Science University of Alberta)MVC and Friends Febuary 2014 18 / 32



Modern MVC

Presentation-Model MVC

MVC except:
Split the view and controller into toolkit-specific and
toolkit-independent parts
Fixes duplication problem

Joshua Charles Campbell (Department of Computing Science University of Alberta)MVC and Friends Febuary 2014 19 / 32



Modern MVC

Presentation-Model MVC

<<Model>>

OurModel
+Fundamental Domain Data
+Observers

+Evolve()

<<View>>

MyView
+Toolkit State
+Controller

+Set Toolkit State()
+Toolkit Callbacks()

<<Controller>>

MyController
+Controller State
+Model

+Make Change To Model()

presenter
1

dialogue
0..1

dialogue
0..*

core
1..*

dialogue
0..*core

1

<<Presentation Model, Observer>>

MyPresenter
+View State
+Model
+View

+Notify Updated()
+Formatting Routine()

dialogue
1

presenter
1..*

Joshua Charles Campbell (Department of Computing Science University of Alberta)MVC and Friends Febuary 2014 20 / 32



Related Patterns

MVC “Classic”

MVC ala Smalltalk 80
Like MVC but V-C pairs implement the toolkit also
V-C pairs contain

The toolkit code & data
Toolkit-specific code & data

Joshua Charles Campbell (Department of Computing Science University of Alberta)MVC and Friends Febuary 2014 21 / 32



Related Patterns

MVC “Classic” cont.

Model contains
The Dialogue
All of the core and core adapter
Application state, sequencing, consistency, feedback for
the user, etc.

Joshua Charles Campbell (Department of Computing Science University of Alberta)MVC and Friends Febuary 2014 22 / 32



Related Patterns

Passive-View MVC

Model and View completely disconnected
View is as light and generic as possible
Controller connects the Model to the View
all dialogue is in the controller

All application-specific logic

what Ruby on Rails thinks of as MVC

Joshua Charles Campbell (Department of Computing Science University of Alberta)MVC and Friends Febuary 2014 23 / 32



Related Patterns

Passive-View MVC

<<Model>>

OurModel
+Fundamental Domain Data
+Observers

+Evolve()

<<View>>

MyView
+Toolkit State
+Controller

+Formatting Routine()

<<Controller, Observer>>

MyController
+Application State
+Model
+View

+Make Change To Model()
+Notify Updated()
+View Callback()

presenter
1

dialogue
1

dialogue
0..*

core
1

Joshua Charles Campbell (Department of Computing Science University of Alberta)MVC and Friends Febuary 2014 24 / 32



Related Patterns

Interface-Control-Model

The model is the core
Plus a list of things to notify on change

The control layer consists of the dialogue
Much app code goes here

The interface layer is toolkit-specific
Unlike View, can recieve commands in order to pass
them to the control layer in a toolkit-independent way

Joshua Charles Campbell (Department of Computing Science University of Alberta)MVC and Friends Febuary 2014 25 / 32



Related Patterns

Model-View-Presenter

Much like Passive View
Adds: Commands, selections and interactors

Joshua Charles Campbell (Department of Computing Science University of Alberta)MVC and Friends Febuary 2014 26 / 32



Related Patterns

Presentation-Abstraction-Control

Everything is connected via a heirarchy of controllers
Models are connected to other models via the
controller
Views are connected to other views via the controller
Two views or controllers using the same model at the
same time is disallowed

Joshua Charles Campbell (Department of Computing Science University of Alberta)MVC and Friends Febuary 2014 27 / 32



Related Patterns

Presentation-Abstraction-Control

Views are toolkit-specific presenters and toolkits
only
Models are core only
All dialogue is in the controller

Including output, display, formatting, etc. logic

Like a bunch of passive-view MVCs connected by
their controllers

instead of their models

what Stanford University of as MVC

Joshua Charles Campbell (Department of Computing Science University of Alberta)MVC and Friends Febuary 2014 28 / 32



Related Patterns

Presentation-Abstraction-Control

<<Model>>

MyModel
+Fundamental Domain Data
+Observers

+Evolve()

<<View>>

MyView
+Toolkit State
+Controller

+Formatting Routine()

<<Controller>>

MyController
+Application State
+Model
+View
+OtherController

+Make Change To Model()
+Notify Updated()
+View Callback()

presenter
1

dialogue
1

dialogue
1

core
1

<<Model>>

TheirModel
+Fundamental Domain Data
+Observers

+Evolve()

<<View>>

TheirView
+Toolkit State
+Controller

+Formatting Routine()

<<Controller>>

TheirController
+Application State
+Model
+View
+OtherController

+Make Change To Model()
+Notify Updated()
+View Callback()

presenter
1

dialogue
1

dialogue
1
core
1

Joshua Charles Campbell (Department of Computing Science University of Alberta)MVC and Friends Febuary 2014 29 / 32



Related Patterns

Conclusion

MVC often refers not to MVC but to
Passive-view, PAC, ICM, or other systems where
a lot of logic that would be in the model or view in MVC
is completely inside the “controller”

MVC almost never refers to the original,
pixels-and-cursors MVC

Joshua Charles Campbell (Department of Computing Science University of Alberta)MVC and Friends Febuary 2014 30 / 32



Bibliography

Bibliography I
Steve Burbeck.
Applications Programming in Smalltalk-80(TM): How to use Model-View-Controller
(MVC).
Smalltalk-80 v2, 5, 1992.

Frank Bushmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael Stal.
Pattern-oriented software architecture: A system of patterns.
John Wiley&Sons, 1996.

Kyle Brown C2 Wiki.
What’s a Controller, Anyway?, 2013.

Martin Fowler.
GUI Architectures, 2006.

Martin Fowler.
Passive View, 2006.

Martin Fowler.
Presentation Model, 2006.

Paul Hegarty.
MVC and Introduction to Objective-C, 2011.

Joshua Charles Campbell (Department of Computing Science University of Alberta)MVC and Friends Febuary 2014 31 / 32



Bibliography

Bibliography II

Greg Hendly and Eric Smith.
Seperating the gui from the application.
The Smalltalk Report, 1(7):19–22, 1992.

Panagiotis Markopoulos.
A compositional model for the formal specification of user interface software.
PhD thesis, University of London, 1997.

Mike Potel.
Mvp: Model-viewer-presenter, 2000.

C2 Wiki.
Model View Controller, 2013.

Wikipedia.
Presentation-abstraction-control — wikipedia, the free encyclopedia, 2014.
[Online; accessed 21-February-2014].

Joshua Charles Campbell (Department of Computing Science University of Alberta)MVC and Friends Febuary 2014 32 / 32


	Introduction
	Modern MVC
	Related Patterns

