

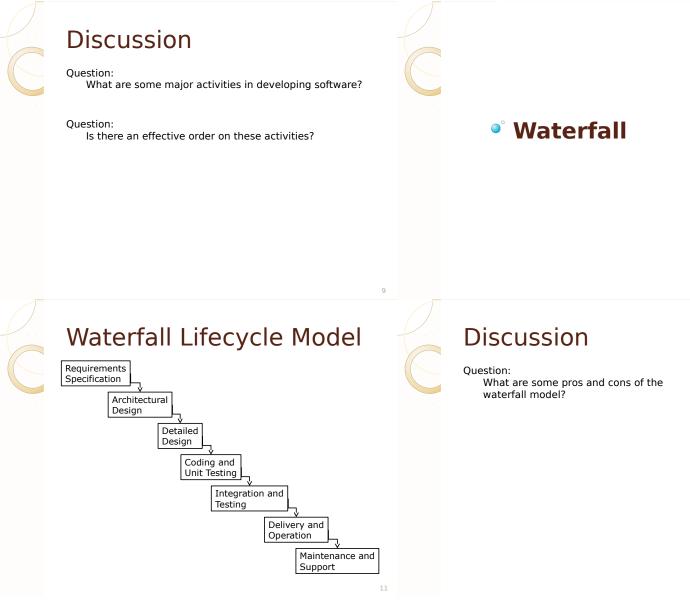
Developer Perspective

- Engineering: manage complexity, scale, lifetime
 - increase quality
 - reduce defects
 - reduce maintenance and support costs
 - reduce time-to-market

reuse successful solutions apply methods and tools iterate and optimize

User Perspective

Usability: meets needs increase productivity easy to learn effective to use reduce errors safe to use


User Perspective

Experience: satisfying motivating looks nice enjoyable fun

Meeting Needs

Verification

making sure you develop the system right (i.e., according to the requirements)

Waterfall

Pros: easily understood enforces discipline

verification at every phase documentation

Waterfall

Cons: uses a manufacturing view of software

• most software is not made as a "final" product

customer must be patient

- but time-to-market is critical
- customer sees the system only at the end
 - may not satisfy their real needs

Waterfall

Cons:

dependence on requirements being "right"

- could end up building the wrong system
- requirements must all be known up front
 - · but cannot always foresee all the requirements

Summary

need to be able to iterate

Prototyping

15

16

Meeting Needs

Validation making sure you develop the *right system* (i.e., what the customer really wanted)

Prototyping

Iterative design: cycling through several designs, improving the product with each pass

Various approaches (in combination): throwaway incremental

evolutionary

Throwaway Prototyping

Process:

build and test prototype gain knowledge for the real product "throw away" the prototype

then "develop" the product for real

Throwaway Prototyping

Pros:

more communication between users and developers functionality is introduced earlier, which is good for morale

Throwaway Prototyping

Cons:

building the prototype must be rapid

some qualities may be sacrificed, like security, reliability, etc.

temptation to use the throwaway prototype in the final product

Incremental Prototyping

Process:

triage system into separate "increments"

• i.e., "must do", "should do", "could do" develop and add one increment at a time

Example (accounting system): prototype 1 — general ledger

prototype 2 — accounts receivable/payable

prototype 3 — payroll

21

Evolutionary Prototyping

Process: feature is refined or "evolved" over time

Example (text editor):

prototype 1 — command key cut/paste prototype 2 — undoable cut/paste prototype 3 — drag and drop cut/paste

Other Kinds of Prototypes

User interface sketches hand drawn or using drawing tool

Storyboards graphical depiction of user interface

like a comic strip

Other Kinds of Prototypes

Index cards, Post-It® notes e.g., tasks in a project plan

- e.g., classes in an object-oriented analysis
- e.g., pages in a web site structure

Other Kinds of Prototypes

Physical mockups: e.g., made out of wood, clay, or foam

Other Kinds of Prototypes

Wizard of Oz:

"Pay no attention to that man behind the curtain!"

feature is actually "implemented" through human intervention "behind the scenes"

30

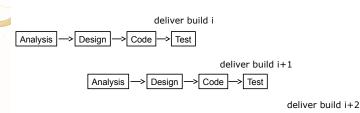
Staged Delivery

31

Staged Delivery

Developers:

deliver the system in a series of working releases or builds


Users: use some functionality while the rest continues to be developed

Possible parallelism:

production and development systems

staggered development streams

Staggered Builds

Analysis --> Design --> Code --> Test

Staged Delivery

Pros:

provides more options different builds focus on specific features

reduces estimation errors risks are reduced earlier

Staged Delivery

Cons:

overhead needed to plan and drive the product toward staged releases

extra complexity of supporting multiple versions in the field

t

Microsoft Daily Build

Process: software product is built every day

build cycle becomes the heartbeat of the project; everyone knows the status

built system must be runnable for overnight testing

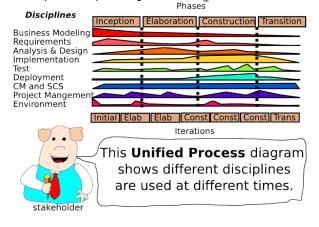
Unified Process

Microsoft Daily Build

Testing: if the build breaks (not runnable nor testable), the whole process is stopped until the problem is found

38

40


failures detected during testing are available and broadcast next morning

huge incentive not to break the build

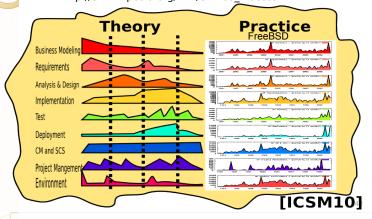
Unified Process

Link:

http://en.wikipedia.org/wiki/Unified_Process

Unified Process

- * Iterative
- * Incremental
- * Customizable
- * Phases
 - * Inception: Risks and Business Cases and Use Cases
 - * Elaboration: use case diagrams and class diagrams
 - * Construction Phase: implementation in iterations


41

43

* Transition: Deployment

Unified Process

Link: http://en.wikipedia.org/wiki/Unified_Process

"Agile Manifesto"

Link: http://agilemanifesto.org/

Agile Practices

Agile Principles

"Individuals and interactions": trust motivated individuals

face-to-face conversation

best work emerges from self-organizing teams team reflects on and adjusts their behavior

promote constant, sustainable pace

Agile Principles

"Working software": the main measure of progress continuous, frequent delivery of value

Agile Principles

"Customer collaboration": customers and developers work together satisfy customer early

Agile Principles

"Responding to change": welcome changing requirements, even late

technical excellence and good design simplicity—art of maximizing work not done

eXtreme Programming (XP)

Link: http://www.extremeprogramming.org/

XP

12 practices:

metaphor

collective

ownership

40 hour week

simple design

coding standards

XP

Philosophy: communication feedback

simplicity

programmer friendly code-centric for small teams (up to about 20)

requires courage

XP

For programmer welfare: "40 hour week"

51

49

small releases

planning game

on-site customer

pair programming

refactoring

testing

continuous integration

- work no more than 40 h a week
- never work overtime a second week in a row

XP

For shared understanding: "metaphor"

guide development with a shared story of how . the system works

"simple design"

• design the system as simply as possible; remove extra complexity when discovered

XP

- For shared development: "collective ownership"
 - anyone can change any code anywhere in the system at any time

"coding standards"

• write all code according to rules that enhance communication and understanding through code

XP

For continuity: "small releases"

- - put simple system into production quickly, then release new versions on a very short cycle

"continuous integration"

integrate and build the system many times a day

"refactoring"

restructure the system to improve its design, simplicity, or flexibility

XP

For feedback:

- "planning game"
 - determine scope of the next iteration and • overall release together with customer

"testing"

write automated unit tests first before the code; customer writes tests in requirements

"on-site customer"

include real, live user on the team, available full-time to answer questions quickly

XP

For synergy: "pair programming"

> have all production code written with two programmers actively at one machine

Discussion

Question: Why should programmers work in pairs?

Pair Programming

Synergies: more ideas

more ideas

- complementary skills
- better consideration of alternative solutions

learning

- expert/student apprenticeship
- continuous critique to learn new things

Pair Programming

Synergies: pressure

> they do not want to let each other down, or waste each other's time

courage

 they give each other confidence to do things they might avoid if alone

Pair Programming

Synergies: reviews

 better able to reveal defects with more eyes looking at the code

debugging

 bugs reveal themselves when one explains the misbehaving code to the other

XP

62

- So why is it called "extreme"? if short iterations are good, make them really short
 - if simplicity is good, make the simplest thing that works
 - if design is good, do it all the time (refactoring)
 - if testing is good, write tests first, and do it all the time (test-driven development)
 - if code reviews are good, do it all the time (pair programming)

Scrum

- Agile Process
- Doesn't prescribe many development methods
- Based around
 - Feedback
 - Roles
 - Meetings
 - Prioritization and Planning
- Scrum is like classic engineering management processes and is often used onsite in civil engineering.

Scrum Roles

- Scrum Master
 - Process Master, protects the team and helps the team follow scrum
- Product Owner
 - Represents the customer
- Team members

Scrum Meetings

- Planning Meeting (1 per iteration)
- Daily Scrum (many per iteration)
- Review (1 per iteration)
- Retrospective (1 per iteration)

Scrum Meetings

- Planning Meeting
 - First meeting of the iteration (1 day)
 - Take requirements and user stories and:
 - Choose appropriate stories to work on next
 - Estimate their cost in time
 - Prioritize them
 - Fit them into the time left for the iteration.

Scrum Meetings

- Daily Scrum
 - Also the daily standup
 - Everyone stands up so that they are uncomfortable and want to finish soon
 - Time limited
 - Every team member answers 3 questions:
 - What did you do?
 - What are you going to do?
 - What is blocking you?

Scrum Meetings

- Retrospective
 - Review issues faced with quality and personel
 - Try to improve the process
 - What went well?
 - What could be improved?
 - Stay Calm
- Review
 - Review work completed
 - Review work not completed
 - Demonstrate current system

Some Scrum in the lab

- I define my user stories in a text file.
- · I act as the product owner, and tell the team what I want to see.
- The team decides what to work on next.
- Every day I ask my research assistants: What did you do since last time?
 - What are you going to do?
 - What do you need from me?
- We don't explicitly prioritize
- We don't explicitly plan
- We don't have multiple iterations • Why not? Because we are experimenting and cannot plan more than a week ahead.

More Information

Articles: "A Rational Design Process: How and Why to Fake It"

- D. L. Parnas and P. C. Clements
- IEEE TSE, 12(2), 1986

"Software Development Worldwide: The State of the Practice"

- M. Cusumano, A. MacCormack, C. F. Kemerer, and W. Crandall
- IEEE Software, November/December 2003

More Information

Articles:

"How Microsoft Builds Software"

- M.A. Cusumano and R.W. Selby
- Comm. ACM, 4(6), 1997

More Information

Books:

Software Project Survival Guide

- S. McConnell
- Microsoft Press, 1998

The Build Master

- V. Maraia
- Addison-Wesley, 2005

More Information

Books: Extreme Programming Explained

- K. Beck
- Addison-Wesley, 2004

Pair Programming Illuminated

• L. Williams and R. Kessler

75

• Addison-Wesley, 2002