
Requirements

Abram Hindle
Department of Computing Science
University of Alberta

2

Slides originally created by Ken Wong

Images reproduced in these slides have been included under section
29 of the Copyright Act, as fair dealing for research, private study,
criticism, or review. Further distribution or uses may infringe
copyright.

“Requirements”

http://www.dilbert.com/strips/comic/2006-01-29/

3

Importance of Requirements

Link:
http://www.projectsmart.co.uk/docs/chaos-report.pdf

4

Reason for Project Failure % of
Responses

Incomplete requirements 13.1

Lack of user involvement 12.4

Lack of resources 10.6

Unrealistic expectations 9.9

Lack of management support 9.3

Changing requirements 8.7

Lack of planning 8.1

System no longer needed 7.5

Requirements
Types:

user requirements

● what tasks the user can do with the system

functional requirements (features)

● what behaviors the system does or supports

non-functional requirements (qualities)

● how well the system should do what it does

● e.g., response time, resource usage, availability

5

Requirements
Types:

external interfaces

● e.g., interfaces to other hardware and software,
data sources and sinks, formats, protocols

physical setting

● e.g., location, workspace, lighting, noise, temperature

developer constraint

● e.g., implementation technology, documentation

6

Requirements
Types:

business requirements

● why the system is needed

business constraint

● what the system or process must comply with

● e.g., corporate policy, industry standard,
government regulation

7

Requirements
Requirements should be:

correct

● requirements properly represent user needs

complete

● all possible scenarios are described

consistent

● requirements do not contradict each other

clear

● no ambiguities

realistic

● can be achieved by “mere mortals”

8

Requirements
Also desired:

traceable

● can trace functionality and tests to the
requirement being satisfied

verifiable

● repeatable test(s) can be designed to show that
the system fulfills the requirement

9

Verifiable Requirements
Verifiable?

“The system shall have a good user interface.”

10

Verifiable Requirements
Verifiable?

“The system shall respond to the user in under one second
for most tasks.”

11

Verifiable Requirements
Verifiable?

“When the output state changes, it is logged in the event
log.”

12

Verifiable Requirements
Verifiable?

“The system shall be free of defects.”

13

Requirements Activities
Done iteratively:

requirements elicitation

● discover user needs

requirements analysis

● decide scope and priorities

● study feasibility, create mockups

requirements specification

● detail the requirements in terms the users can
understand

14

Users
Who is the “user”?

primary

● end user

● with frequent hands-on use

secondary

● manager of end users

● with occasional use, or via an assistant

tertiary

● owner of the system

● uses output, influences or makes funding decisions

15

Users
Some characteristics to consider:

background

● literacy and language

● motivation to learn

● domain knowledge

● task familiarity

● computer skills

● attitude to computers and technology

16

17

© Roz Chast

Users
Some characteristics to consider:

perceptual, motor, and tactile abilities

● seeing and hearing difficulties

● fine motor skills with input devices

physical

● height and strength (for kiosk design)

● hand/finger size (for mobile device design)

● health, age, and gender

social

● relationships with peers

● culture

18

Users
Kinds of use:

infrequent use / novice user

● need wizards

● need clear prompts, error handling

frequent use / expert user

● need keyboard shortcuts

● need customization, programmability

19

Users
Some issues to consider:

users cannot always express what they want

● but they often know what they do not like

users may not know what is possible

● what is technically and economically feasible?

users stick to what they …

● know already works, or have always done

users may fear job losses

● leads to non-constructive participation

20

“Users”

http://www.dilbert.com/strips/comic/1994-09-22/

21

Users
“Innovator’s dilemma”:

as the user base for an application grows, there is a
tendency for developers to focus on this increasingly
expert (and vocal) group of users

the system becomes more sophisticated

development becomes “optimized” for them

22

Users
“Innovator’s dilemma”:

potential new users need “less”

experts don’t want their app “dumbed down”

competitor attracts the new users with a simpler “good
enough” app

original app loses market share due to disruption from the
low end

23

“Listening to Users”

24
© Fox

“Listening to Users”

http://theoatmeal.com/comics/design_hell

25

Understanding
Tips:

manage expectations

● be clear and honest about claims

● avoid surprises, disappointments, hype

involve the user

● build tangible prototypes to gain feedback

● more likely to forgive problems if they are
involved

establish a glossary

● terminology used in the application domain
(not programming domain)

26

User Requirements

27

Identifying Tasks
Study what tasks users do:

what is the goal and context?

what information is needed?

what are the steps?

who does the user work with?

why is it done this way?

28

Identifying Tasks
Scenario:

an informal narrative

personal and concrete, but not particularly general

use the scenario to understand existing goals, task flow,
and possible irritants

29

Scenario
Example:

“I want to track the calories for a meal, so I consult the
USDA Nutrient database. I want to look up ‘Pacific salmon’
so I enter that as the keywords. Item not found! So I enter
‘salmon’ and try again. That works, but I get 46 items,
including salmonberries and even cloudberries. Why? I
choose ‘fish, salmon, sockeye, cooked, dry heat’, then
figure 2.5 x 100 g units for my item, and scan the table to
see 422 kcal in the energy row.”

30

Specifying Tasks
Use Cases:

capture the goal, conditions, and steps of a coherent
interaction between the actor(s) and the software system

more general than a specific scenario

written from a “user” point-of-view

31

Defining Use Cases
Stages:

identify the actors

● consider different user roles and external systems

define use cases

● include all cases of use

refine use cases

● consider exceptional conditions and qualities

relate use cases

● consider inclusion and extension dependencies

32

Identify the Actors

33

Search for
Nutrition Info

Update
Nutrition Info

Browse
Nutrition Info

Meal
Planner

Administrator

use cases,
not components

boundary of the system

actor

use case diagram

Identify the Actors
Actor generalization:

34

Meal
Planner

Administrator

User

Define/Refine Use Cases
Example:

35

SearchForNutritionInfo

Meal Planner (primary)

Meal Planner finds nutrition information

Meal Planner chooses the Search option

Meal Planner knows food name and
amount.

On success, nutrition information displayed.

…

Use Case Name

Participating Actors

Goal

Trigger

Precondition

Postcondition

Define/Refine Use Cases
Example:

36

System prompts Meal Planner to enter
keywords.

Meal Planner submits keywords.

System lists matching foods, prompting for
a selection.

Meal Planner browses and selects a food.

System prompts for food weight in units of
100 g.

Meal Planner enters food units.

System presents nutrition data for the
amount of food.

…

Basic Flow 1

2

3

4

5

6

7

user point of view

avoid implementation specifics

Define/Refine Use Cases
Example:

37

If there are no matching foods

System displays an error

System returns to step 1

If given food units is non-numeric, use 0
and proceed

Exceptions 3

3.1

3.2

7

Define/Refine Use Cases
Example:

38

System responds in under 2 s for list of
matching foods and for nutrition data on a
specific food.

Use USDA nutrition data.

Qualities

Constraints

Includes

Extends

Related Artifacts

Notes

Open Issues

Essential Use Case

39

SearchForNutritionInfo

User Intention (Meal
Planner)

System Responsibility

Initiate search.

Request keywords.

Submit keywords.

List matching foods to
select.

Select a food.

Request food units.

Enter food units.

Present nutrition data.

Exercise
Question:

What is a basic flow for the task of
withdrawing cash from a bank machine?

40

Relate Use Cases
Inclusion:

a use case may include another use case
(for necessary, shared behavior)

41

Pay Bill
Online

Get Balance
Online

Login

«include»

«include»

Relate Use Cases
Extension:

a use case may be extended by another use case (for
optional or exceptional behavior)

42

Login

Reset
Password

«extend»

Relate Use Cases
Use case generalization:

a use case may be a specialization of a more general use
case

43

Make Deposit Make
Withdrawal

Do ATM
Transaction

User Stories

44

Specifying Needs

Agile method: less writing, more talking

45

Write down all the
requirements.

Users only get what
was written.

Users get what
they want.

Specifying Needs
User story:

written description of what a user wants to achieve with
the system

46

As a guest, I want to
reserve a hotel room.

on index cards

As a guest, I want to see

a list of room amenities.

As a conference planner,
I want to see meeting
room capacities.

Typical forms:

As a «user role»,
I want «goal».

As a «user role»,
I want «goal»,
so that «reason».

Defining User Stories
Tips:

describe what not how

● avoid technical details or choices of
technologies,
unless it is a development constraint

avoid epics for near-term needs

● better to split up huge stories into more,
smaller stories (but not too small)

47

Defining User Stories
Tips:

prioritize user stories

● discuss with the user what they find of most
value, and stage development on that first

can attach an effort estimate to complete

● normally sized to take days, not many weeks

use stories to plan development tasks

● create work items in the iteration plan

48

“SMART Work Items”

Link:
http://xp123.com/articles/invest-in-good-stories-and-smart-tasks/

49

S Specific

M Measurable

A Achievable

R Relevant

T Time Boxed

“INVEST in Good Stories”

Link:
http://xp123.com/articles/invest-in-good-stories-and-smart-tasks/

50

I Independent

N Negotiable

V Valuable

E Estimable

S Small

T Testable

Testable User Stories
Front of the card:

51

As a meal planner, I want
to see nutrition
information for a given
amount of a given food.

Testable User Stories
Back of the card:

Link:
http://xprogramming.com/articles/
expcardconversationconfirmation/

52

Try it for 250 g of baked Pacific salmon.Try it with a missing food name.
Try it with a non-numeric amount.

acceptance tests

“User Story”

http://www.dilbert.com/strips/comic/2003-01-10/

53

Augmenting
Requirements

54

Augmenting Requirements
Can add other descriptions, for example:

use cases to user stories

data schemas

sample input and output

user interface mockups and storyboards

grammars (language syntactic/lexical structure)

55

letter

letter

digit

identifier <identifier> ::=
<letter> { <letter> | <digit> }

State Models
Modeling behavior:

used in formally modeling the behavior of a specific object
in response to external events

56

UML State Diagram
Modeling behavior:

states in which something can be in

● a situation represented by attribute values

directed transitions between states

● triggered by events, input, time, messages, etc.

57

Off On

initial state state

transition

start

stop

start / toggle := true

stop / toggle := false

UML State Diagram

58

Requested

Reserved

Checked In

Waiting

Canceled

room unavailable /
put on waiting listroom available /

decrement
room count

room available /
decrement room count

client gives up /
remove from list

client cancels /
increment room count

client
checks in /

client checks out /
increment room counttrigger /

effect

Archived

a final state

UML State Diagram
States:

59

state name state name

activities

state name

variables

activities

UML State Diagram
Activities in states:

60

Timing

do / countdown

Ready

entry / beep

timeout

entry /
action

perform action when entering
state

do / action perform action while in state

exit / action perform action when exiting
state

UML State Diagram
Activities in states:

61

SettingDay

entry /
 start day blink
button1 /
 increment day
exit /
 stop day blink

SettingMonth

entry /
 start month blink
button1 /
 increment month
exit /
 stop month blink

button2

trigger /
action

when trigger occurs, perform
action

button3

also called an
internal transition

UML State Diagram
Transitions:

if in a current state,
and trigger occurs,
and guard constraint (if any) is true …

then perform state exit actions (if any),
perform corresponding transition effect (if any),
perform new state entry actions (if any);

otherwise, stay at current state

62

trigger [guard] / effect
general form of transition label

Room Planner
Canvas:

to place and move items

Mouse events:
click

press/drag/release

Item type menu:
choices of fixtures and furniture

63

Room Planner
Placing an item:

user clicks on canvas outside any item

● system shows the item type menu

user chooses an item type from the menu

● system hides the item type menu

user clicks on the canvas

● system draws item of the chosen type
at the mouse location

64

Room Planner
Moving an item:

user presses inside an item

● system highlights item

user drags item

● system shows moving item

user releases mouse

● system puts item at new location

● system removes item highlighting

65

Room Planner
States:

waiting

● nothing happening

moving

● moving item to new position

choosing

● choosing item type from menu

placing

● placing chosen shape

66

Moving

67

current
(x, y)

erase current;
update current.x;
update current.y;
draw current

Waiting

Choosing

Placing

click
[outside any item] /
show menu

choose
item type /
hide menu

click /
draw item at
mouse location

press
[inside item F] /
current := F;
highlight current

release /
unhighlight
current

drag (x, y)

UML State Diagram
Tips:

check for completeness

● states reachable?

● missing transitions?

● events not considered?

● unforeseen situations?

check for dangerous situations

● e.g., exiting without having saved edits

68

UML State Diagram
Tips:

check for consistency

● similar interactions have similar effects?

● effects are visible and give good feedback?

aid the user

● is undo appropriate, in a given state?

● is cancel or escape appropriate?

● is invoking help appropriate?

69

More Information
Books:

The Essence of Object-Oriented Programming with Java
and UML

● B. Wampler

● Addison-Wesley, 2002

UML Distilled

● M. Fowler

● Addison-Wesley, 2003

70

More Information

71

Books:
User Stories Applied

● M. Cohn

● Addison-Wesley, 2004

More About Software Requirements

● K. Wiegers

● Microsoft, 2006

More Information

72

Books:
Software Engineering: Theory and Practice

● S.L. Pfleeger

● Prentice-Hall, 2009

More Information
Links:

Use Cases, Ten Years Later

● http://alistair.cockburn.us/Use+cases%2c+ten+years+
later

Effective User Stories for Agile Requirements

● http://www.mountaingoatsoftware.com
/presentations/52-effective-user-stories-for-agile-requirements

73

