

2

Images reproduced in these slides have been included under section 29 of the
Copyright Act, as fair dealing for research, private study, criticism, or review.
Further distribution or uses may infringe copyright.

What makes a Process?

3

Developer Perspective
Engineering:

manage complexity, scale, lifetime

increase quality

reduce defects

reduce maintenance and support costs

reduce time-to-market

reuse successful solutions

apply methods and tools

iterate and optimize

5

User Perspective
Usability:

meets needs

increase productivity

easy to learn

effective to use

reduce errors

safe to use

6

User Perspective
Experience:

satisfying

motivating

looks nice

enjoyable

fun

7

Meeting Needs
Verification

making sure you develop the system right
(i.e., according to the requirements)

8

Discussion
Question:

What are some major activities in developing software?

Question:
Is there an effective order on these activities?

9

Waterfall Lifecycle Model

11

Requirements
Specification

Architectural
Design

Detailed
Design

Coding and
Unit Testing

Integration and
Testing

Delivery and
Operation

Maintenance and
Support

Discussion
Question:

What are some pros and cons of the
waterfall model?

12

Waterfall
Pros:

easily understood

enforces discipline

verification at every phase

documentation

13

Waterfall
Cons:

uses a manufacturing view of software

● most software is not made as a “final” product

customer must be patient

● but time-to-market is critical

customer sees the system only at the end

● may not satisfy their real needs

14

Waterfall
Cons:

dependence on requirements being “right”

● could end up building the wrong system

requirements must all be known up front

● but cannot always foresee all the requirements

Summary
need to be able to iterate

15

Meeting Needs
Validation

making sure you develop the right system
(i.e., what the customer really wanted)

17

Prototyping
Iterative design:

cycling through several designs, improving the product with each
pass

Various approaches (in combination):
throwaway

incremental

evolutionary

18

Throwaway Prototyping
Process:

build and test prototype

gain knowledge for the real product

“throw away” the prototype

then “develop” the product for real

19

Throwaway Prototyping
Pros:

more communication between users and developers

functionality is introduced earlier, which is good for morale

20

Throwaway Prototyping
Cons:

building the prototype must be rapid

some qualities may be sacrificed,
like security, reliability, etc.

temptation to use the throwaway prototype in the final product

21

Incremental Prototyping
Process:

triage system into separate “increments”

● i.e., “must do”, “should do”, “could do”

develop and add one increment at a time

Example (accounting system):
prototype 1 — general ledger

prototype 2 — accounts receivable/payable

prototype 3 — payroll

22

Evolutionary Prototyping
Process:

feature is refined or “evolved” over time

Example (text editor):
prototype 1 — command key cut/paste

prototype 2 — undoable cut/paste

prototype 3 — drag and drop cut/paste

23

Other Kinds of Prototypes
User interface sketches

hand drawn or using drawing tool

Storyboards
graphical depiction of user interface

like a comic strip

24

Other Kinds of Prototypes
Index cards, Post-It® notes

e.g., tasks in a project plan

e.g., classes in an object-oriented analysis

e.g., pages in a web site structure

25

Other Kinds of Prototypes
Physical mockups:

e.g., made out of wood, clay, or foam

26

27© Canon

28© Alan Kay

29© MGM

Other Kinds of Prototypes
Wizard of Oz:

“Pay no attention to that man behind the curtain!”

feature is actually “implemented” through human intervention
“behind the scenes”

30

Staged Delivery
Developers:

deliver the system in a series of working releases or builds

Users:
use some functionality while the rest continues to be developed

Possible parallelism:
production and development systems

staggered development streams

32

Staggered Builds

33

Analysis Design Code Test

Analysis Design Code Test

Analysis Design Code Test

t

deliver build i

deliver build i+1

deliver build i+2

Staged Delivery
Pros:

provides more options

different builds focus on specific features

reduces estimation errors

risks are reduced earlier

34

Staged Delivery
Cons:

overhead needed to plan and drive the product toward staged
releases

extra complexity of supporting multiple versions in the field

35

36© Microsoft

Microsoft Daily Build
Process:

software product is built every day

build cycle becomes the heartbeat of the project; everyone knows
the status

built system must be runnable for overnight testing

37

Microsoft Daily Build
Testing:

if the build breaks (not runnable nor testable), the whole process is
stopped until the problem is found

failures detected during testing are available and broadcast next
morning

huge incentive not to break the build

38

Continuous Integration
●Take the daily build

●Combine it with testing
●Combine it with building
●Maybe combine it with deployment
●Do it continuously (repeatedly)
●Do it as much as a possible (per commit)

● Use tools such as:
●Hudson
●Jenkins
●Travis-CI
●Microsoft Team Foundation Server
●Apache Continium, Apache Gump
●Tinberbox

39

http://en.wikipedia.org/wiki/Unified_Process

Unified Process

42

* Iterative
* Incremental
* Customizable
* Phases

* Inception: Risks and Business Cases
and Use Cases

* Elaboration: use case diagrams and
class diagrams

* Construction Phase: implementation
in iterations

* Transition: Deployment

http://en.wikipedia.org/wiki/Unified_Process

“Agile Manifesto”
Link:

http://agilemanifesto.org/

45

http://agilemanifesto.org/
http://agilemanifesto.org/
http://agilemanifesto.org/

Agile Principles
“Individuals and interactions”:

trust motivated individuals

face-to-face conversation

best work emerges from self-organizing teams

team reflects on and adjusts their behavior

promote constant, sustainable pace

46

Agile Principles
“Working software”:

the main measure of progress

continuous, frequent delivery of value

47

Agile Principles
“Customer collaboration”:

customers and developers work together

satisfy customer early

48

Agile Principles
“Responding to change”:

welcome changing requirements, even late

technical excellence and good design

simplicity—art of maximizing work not done

49

eXtreme Programming (XP)
Link:

http://www.extremeprogramming.org/

50

http://www.extremeprogramming.org/
http://www.extremeprogramming.org/
http://www.extremeprogramming.org/

XP
Philosophy:

communication

feedback

simplicity

programmer friendly

code-centric

for small teams (up to about 20)

requires courage

51

XP

12 practices:

40 hour week

metaphor

simple design

collective ownership

coding standards

small releases

continuous integration

refactoring

planning game

testing

on-site customer

pair programming

52

XP
For programmer welfare:

“40 hour week”

● work no more than 40 h a week

● never work overtime a second week in a row

53

XP
For shared understanding:

“metaphor”

● guide development with a shared story of how the
system works

“simple design”

● design the system as simply as possible; remove extra
complexity when discovered

54

XP
For shared development:

“collective ownership”

● anyone can change any code anywhere in the system
at any time

“coding standards”

● write all code according to rules that enhance
communication and understanding through code

55

XP
For continuity:

“small releases”

● put simple system into production quickly, then release
new versions on a very short cycle

“continuous integration”

integrate and build the system many times a day

“refactoring”

restructure the system to improve its design, simplicity,
or flexibility

56

XP
For feedback:

“planning game”

● determine scope of the next iteration and overall
release together with customer

“testing”
● write automated unit tests first before the code;

customer writes tests in requirements

“on-site customer”
● include real, live user on the team, available full-time

to answer questions quickly

57

XP
For synergy:

“pair programming”

● have all production code written with two programmers
actively at one machine

58

“Pair Programming”

http://www.dilbert.com/strips/comic/2003-01-09/

59

http://www.dilbert.com/strips/comic/2003-01-09/
http://www.dilbert.com/strips/comic/2003-01-09/
http://www.dilbert.com/strips/comic/2003-01-09/

Discussion
Question:

Why should programmers work in pairs?

60

Pair Programming
Synergies:

more ideas

● complementary skills

● better consideration of alternative solutions

learning

● expert/student apprenticeship

● continuous critique to learn new things

61

Pair Programming
Synergies:

pressure

● they do not want to let each other down, or waste each
other’s time

courage

● they give each other confidence to do things they
might avoid if alone

62

Pair Programming
Synergies:

reviews

● better able to reveal defects with more eyes looking at
the code

debugging

● bugs reveal themselves when one explains the
misbehaving code to the other

63

XP
So why is it called “extreme”?

if short iterations are good,
make them really short

if simplicity is good,
make the simplest thing that works

if design is good,
do it all the time (refactoring)

if testing is good, write tests first, and
do it all the time (test-driven development)

if code reviews are good,
do it all the time (pair programming)

64

Scrum
● Agile Process
● Doesn't prescribe many development

methods
● Based around

● Feedback
● Roles
● Meetings
● Prioritization and Planning

● Scrum is like classic engineering
management processes and is often
used onsite in civil engineering.

Scrum Roles
● Scrum Master

● Process Master, protects the team
and helps the team follow scrum

● Product Owner
● Represents the customer

● Team members

Scrum Meetings
● Planning Meeting (1 per iteration)
● Daily Scrum (many per iteration)
● Review (1 per iteration)
● Retrospective (1 per iteration)

Scrum Meetings
● Planning Meeting

● First meeting of the iteration (1 day)
● Take requirements and user stories

and:
– Choose appropriate stories to

work on next
– Estimate their cost in time
– Prioritize them
– Fit them into the time left for the

iteration.

Scrum Meetings
● Daily Scrum

● Also the daily standup
● Everyone stands up so that they are

uncomfortable and want to finish
soon

● Time limited
● Every team member answers 3

questions:
– What did you do?
– What are you going to do?
– What is blocking you?

Scrum Meetings
● Retrospective

● Review issues faced with quality and
personel

● Try to improve the process
● What went well?
● What could be improved?
● Stay Calm

● Review
● Review work completed
● Review work not completed
● Demonstrate current system

Some Scrum in the lab
● I define my user stories in a text file.
● I act as the product owner, and tell the team

what I want to see.
● The team decides what to work on next.
● Every day I ask my research assistants:

● What did you do since last time?
● What are you going to do?
● What do you need from me?

● We don't explicitly prioritize
● We don't explicitly plan
● We don't have multiple iterations

● Why not? Because we are experimenting
and cannot plan more than a week ahead.

More Information
Articles:

“A Rational Design Process:
How and Why to Fake It”

● D. L. Parnas and P. C. Clements

● IEEE TSE, 12(2), 1986

“Software Development Worldwide:
The State of the Practice”

● M. Cusumano, A. MacCormack,
C. F. Kemerer, and W. Crandall

● IEEE Software, November/December 2003

73

More Information
Articles:

“How Microsoft Builds Software”

● M.A. Cusumano and R.W. Selby

● Comm. ACM, 4(6), 1997

74

More Information
Books:

Software Project Survival Guide

● S. McConnell

● Microsoft Press, 1998

The Build Master

● V. Maraia

● Addison-Wesley, 2005

75

More Information
Books:

Extreme Programming Explained

● K. Beck

● Addison-Wesley, 2004

Pair Programming Illuminated

● L. Williams and R. Kessler

● Addison-Wesley, 2002

76

	Software Process
	Slide 2
	Developer Perspective
	Slide 4
	Slide 5
	User Perspective
	User Perspective
	Meeting Needs
	Discussion
	Waterfall
	Waterfall Lifecycle Model
	Discussion
	Waterfall
	Waterfall
	Waterfall
	Prototyping
	Meeting Needs
	Prototyping
	Throwaway Prototyping
	Throwaway Prototyping
	Throwaway Prototyping
	Incremental Prototyping
	Evolutionary Prototyping
	Other Kinds of Prototypes
	Other Kinds of Prototypes
	Other Kinds of Prototypes
	Slide 27
	Slide 28
	Slide 29
	Other Kinds of Prototypes
	Staged Delivery
	Staged Delivery
	Staggered Builds
	Staged Delivery
	Staged Delivery
	Slide 36
	Microsoft Daily Build
	Microsoft Daily Build
	Slide 39
	Agile Practices
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	“Agile Manifesto”
	Agile Principles
	Agile Principles
	Agile Principles
	Agile Principles
	eXtreme Programming (XP)
	XP
	XP
	XP
	XP
	XP
	XP
	XP
	XP
	“Pair Programming”
	Discussion
	Pair Programming
	Pair Programming
	Pair Programming
	XP
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	More Information
	More Information
	More Information
	More Information

