
Source file:
https://web.archive.org/web/20240324083233/https://devel
oper.android.com/codelabs/build-your-first-android-app?hl
=en#0

Build Your First Android App in Java
This document has 10 sections.

https://web.archive.org/web/20240324083233/https://developer.android.com/codelabs/build-your-first-android-app?hl=en#0
https://web.archive.org/web/20240324083233/https://developer.android.com/codelabs/build-your-first-android-app?hl=en#0
https://web.archive.org/web/20240324083233/https://developer.android.com/codelabs/build-your-first-android-app?hl=en#0

1. Welcome

In this codelab, you'll learn how to build and run your first Android app in
the Java programming language. (If you're looking for the Kotlin version of
this codelab, you can go here.)

What you must know already

This codelab is written for programmers and assumes that you know either
the Java or Kotlin programming language. If you are an experienced
programmer and adept at reading code, you will likely be able to follow this
codelab, even if you don't have much experience with Java.

What you'll learn

https://developer.android.com/codelabs/build-your-first-android-app-kotlin
https://developer.android.com/codelabs/build-your-first-android-app-kotlin
https://developer.android.com/courses/android-basics-compose/course

● How to use Android Studio to build your app.
● How to run your app on a device or in the emulator.
● How to add interactive buttons.
● How to display a second screen when a button is pressed.

Use Android Studio and Java to write Android apps

You write Android apps in the Java programming language using an IDE
called Android Studio. Based on JetBrains' IntelliJ IDEA software, Android
Studio is an IDE designed specifically for Android development.

Note: This version of the codelab requires Android Studio 3.6 or higher.

To work through this codelab, you will need a computer that can run
Android Studio 3.6 or higher (or already has Android Studio 3.6 or higher
installed).

https://developer.android.com/studio/preview

2. Install Android Studio

Note: This version of the codelab requires Android Studio 3.6 or higher.

You can download the latest Android Studio from the Android Studio page.

Android Studio provides a complete IDE, including an advanced code
editor and app templates. It also contains tools for development,
debugging, testing, and performance that make it faster and easier to
develop apps. You can use Android Studio to test your apps with a large
range of preconfigured emulators, or on your own mobile device. You can
also build production apps and publish apps on the Google Play store.

Note: Android Studio is continually being improved. For the latest
information on system requirements and installation instructions, see the
Android Studio download page.

Android Studio is available for computers running Windows or Linux, and
for Macs running macOS. The OpenJDK (Java Development Kit) is
bundled with Android Studio.

The installation is similar for all platforms. Any differences are noted below.

1. Navigate to the Android Studio download page and follow the
instructions to download and install Android Studio.

2. Accept the default configurations for all steps, and ensure that all
components are selected for installation.

3. After the install is complete, the setup wizard downloads and installs
additional components, including the Android SDK. Be patient,
because this process might take some time, depending on your
internet speed.

4. When the installation completes, Android Studio starts, and you are
ready to create your first project.

https://developer.android.com/studio/
https://developer.android.com/studio
https://developer.android.com/studio/
https://developer.android.com/studio/install.html

Troubleshooting: If you run into problems with your installation, see the
Android Studio release notes or Troubleshoot Android Studio.

https://developer.android.com/studio/releases
https://developer.android.com/studio/troubleshoot

3. Create your first Project
In this step, you will create a new Android project for your first app. This
simple app displays the string "Hello World" on the screen of an Android
virtual or physical device.

Here's what the finished app will look like:

What you'll learn
● How to create a project in Android Studio.
● How to create an emulated Android device.
● How to run your app on the emulator.
● How to run your app on your own physical device, if you have one.

Step 1: Create a new project
1. Open Android Studio.
2. In theWelcome to Android Studio dialog, click New Project.

3. Select Basic Views Activity (not the default). Click Next.

4. Give your application a Name such as My First App.
5. Make sure the Language is set to Java.

6. Leave the defaults for the other fields.

7. Click Finish.

After these steps, Android Studio:

● Creates a folder for your Android Studio project called My First App.
This is usually in a folder called AndroidStudioProjects below your
home directory.

● Builds your project (this may take a few moments). Android Studio
uses Gradle as its build system. You can follow the build progress at
the bottom of the Android Studio window.

● Opens the code editor showing your project.

Step 2: Get your screen set up

When your project first opens in Android Studio, there may be a lot of
windows and panes open. To make it easier to get to know Android Studio,
here are some suggestions on how to customize the layout.

1. If there's a Gradle window open on the right side, click on the
minimize button (—) in the upper right corner to hide it.

2. Depending on the size of your screen, consider resizing the pane on
the left showing the project folders to take up less space.

https://gradle.org/

At this point, your screen should look a bit less cluttered, similar to the
screenshot shown below.

Step 3: Explore the project structure and layout
The upper left of the Android Studio window should look similar to the
following diagram:

Based on you selecting the Basic Views Activity template for your project,
Android Studio has set up a number of files for you. You can look at the
hierarchy of the files for your app in multiple ways, one is in Project view.
Project view shows your files and folders structured in a way that is
convenient for working with an Android project. (This does not always
match the file hierarchy! To see the file hierarchy, choose the Project files
view by clicking (3).)

1. Double-click the app (1) folder to expand the hierarchy of app files.
(See (1) in the screenshot.)

2. If you click Project (2), you can hide or show the Project view. You
might need to select View > Tool Windows to see this option.

3. The current Project view selection (3) is Project > Android.

In the Project > Android view you see three or four top-level folders below
your app folder: manifests, java, java (generated) and res. You may not
see java (generated) right away.

1. Expand the manifests folder. This folder contains
AndroidManifest.xml. This file describes all the components of
your Android app and is read by the Android runtime system when
your app is executed.

2. 2. Expand the java folder. All your Java language files are organized
here. The java folder contains three subfolders:

com.example.myfirstapp: This folder contains the Java source code
files for your app.

com.example.myfirstapp (androidTest): This folder is where you
would put your instrumented tests, which are tests that run on an
Android device. It starts out with a skeleton test file.

com.example.myfirstapp (test): This folder is where you would put
your unit tests. Unit tests don't need an Android device to run. It starts
out with a skeleton unit test file.

3. Expand the res folder. This folder contains all the resources for
your app, including images, layout files, strings, icons, and styling. It
includes these subfolders:

drawable: All your app's images will be stored in this folder.

layout: This folder contains the UI layout files for your activities.
Currently, your app has one activity that has a layout file called
activity_main.xml. It also contains content_main.xml,
fragment_first.xml, and fragment_second.xml.

menu: This folder contains XML files describing any menus in your
app.

mipmap: This folder contains the launcher icons for your app.

navigation: This folder contains the navigation graph, which tells
Android Studio how to navigate between different parts of your
application.

values: This folder contains resources, such as strings and colors,
used in your app.

Step 4: Create a virtual device (emulator)

In this task, you will use the Android Virtual Device (AVD) manager to
create a virtual device (or emulator) that simulates the configuration for a
particular type of Android device.

The first step is to create a configuration that describes the virtual device.

1. In Android Studio, select Tools > Device Manager, or click the
Device Manager icon in the toolbar.

2. Click the (+) button > Create Virtual Device. (If you have created a
virtual device before, the window shows all of your existing devices).
The Select Hardware window shows a list of pre-configured
hardware device definitions.

3. Choose a device definition, such as Pixel 2, and click Next. (For this
codelab, it really doesn't matter which device definition you pick).

4. In the System Image dialog, from the Recommended tab, choose
the latest release. (This does matter.)

5. If a Download link is visible next to a latest release, it is not installed
yet, and you need to download it first. If necessary, click the link to
start the download, and click Next when it's done. This may take a
while depending on your connection speed.

https://developer.android.com/studio/run/managing-avds

Note: System images can take up a large amount of disk space, so just
download what you need.

6. In the next dialog box, accept the defaults, and click Finish.
The Device Manager now shows the virtual device you added.

7. If your Device Manager window is still open, go ahead and close it.

Step 5: Run your app on your new emulator
1. In Android Studio, select Run > Run ‘app' or click the Run icon in the

toolbar. The icon will change when your app is already running.

If you get a dialog box stating "Instant Run requires that the platform
corresponding to your target device (Android N...) is installed" go ahead
and click Install and continue.

2. In Run > Select Device, under Available devices, select the virtual
device that you just configured. This menu also appears in the
toolbar.

The emulator starts and boots just like a physical device. Depending on the
speed of your computer, this may take a while. You can look in the small
horizontal status bar at the very bottom of Android Studio for messages to
see the progress.

Once your app builds and the emulator is ready, Android Studio uploads
the app to the emulator and runs it. You should see your app as shown in
the following screenshot.

Note: It is a good practice to start the emulator at the beginning of your
session. Don't close the emulator until you are done testing your app, so
that you don't have to wait for the emulator to boot again. Also, don't have
more than one emulator running at once, to reduce memory usage.

Step 6: Run your app on a device (if you have one)

What you need:

● An Android device such as a phone or tablet.
● A data cable to connect your Android device to your computer via the

USB port.
● If you are using a Linux or Windows OS, you may need to perform

additional steps to run your app on a hardware device. Check the
Run Apps on a Hardware Device documentation. On Windows, you
may need to install the appropriate USB driver for your device. See
OEM USB Drivers.

Run your app on a device

To let Android Studio communicate with your device, you must turn on USB
Debugging on your Android device.

On Android 4.2 and higher, the Developer options screen is hidden by
default. To show Developer options and enable USB Debugging:

1. On your device, open Settings > About phone and tap Build
number seven times.

2. Return to the previous screen (Settings). Developer options
appears at the bottom of the list. Tap Developer options.

3. Enable USB Debugging.

Now you can connect your device and run the app from Android Studio.

1. Connect your device to your development machine with a USB cable.
On the device, you might need to agree to allow USB debugging from
your development device.

https://developer.android.com/studio/run/device
https://developer.android.com/studio/run/oem-usb

2. In Android Studio, click Run (Green arrow icon) in the toolbar at the
top of the window. (You might need to select View > Toolbar to see
this option.) The Select Deployment Target dialog opens with the list
of available emulators and connected devices.

3. Select your device, and click OK. Android Studio installs the app on
your device and runs it.

Note: If your device is running an Android platform that isn't installed in
Android Studio, you might see a message asking if you want to install the
needed platform. Click Install and Continue, then click Finish when the
process is complete.

Troubleshooting

If you're stuck, quit Android Studio and restart it.

If Android Studio does not recognize your device, try the following:

1. Disconnect your device from your development machine and
reconnect it.

2. Restart Android Studio.

If your computer still does not find the device or declares it "unauthorized":

1. Disconnect the device.
2. On the device, open Settings->Developer Options.
3. Tap Revoke USB Debugging authorizations.
4. Reconnect the device to your computer.
5. When prompted, grant authorizations.

If you are still having trouble, check that you installed the appropriate USB
driver for your device. See the Using Hardware Devices documentation.

Check the troubleshooting section in the Android Studio documentation.

Step 7: Explore the app template
When you created the project and selected Basic Views Activity, Android
Studio set up a number of files, folders, and also user interface elements

https://developer.android.com/studio/run/device
https://developer.android.com/studio/troubleshoot

for you, so you can start out with a working app and major components in
place. This makes it easier to build your application.

Looking at your app on the emulator or your device, in addition to the Next
button, notice the floating action button with an email/mail icon. If you tap
that button, you'll see it has been set up to briefly show a message at the
bottom of the screen. This message space is called a snackbar, and it's
one of several ways to notify users of your app with brief information.

At the top right of the screen, there's a menu with 3 vertical dots . If
you tap on that, you'll see that Android Studio has also created an
options menu with a Settings item. Choosing Settings doesn't do anything
yet, but having it set up for you makes it easier to add user-configurable
settings to your app.

Later in this codelab, you'll look at the Next button and modify the way it
looks and what it does.

4. Explore the layout editor
Generally, each screen in your Android app is associated with one or more
fragments. The single screen displaying "Hello first fragment" is created by
one fragment, called FirstFragment. This was generated for you when
you created your new project. Each visible fragment in an Android app has
a layout that defines the user interface for the fragment. Android Studio has
a layout editor where you can create and define layouts.

Layouts are defined in XML. The layout editor lets you define and modify
your layout either by coding XML or by using the interactive visual editor.

Every element in a layout is a view. In this task, you will explore some of
the panels in the layout editor, and you will learn how to change property of
views.

What you'll learn
● How to use the layout editor.
● How to set property values.
● How to add string resources.
● How to add color resources.

Step 1: Open the layout editor
1. Find and open the layout folder (app > res > layout) on the left side in

the Project

https://developer.android.com/guide/fragments
https://en.wikipedia.org/wiki/XML

2. Double-click fragment_first.xml.

Troubleshooting: If you don't see the file fragment_first.xml, confirm
you are running Android Studio 3.6 or later, which is required for this
codelab.

The panels to the right of the Project view comprise the Layout Editor. They
may be arranged differently in your version of Android Studio, but the
function is the same.

On the left is a Palette (1) of views you can add to your app.

Below that is a Component Tree (2) showing the views currently in this file,
and how they are arranged in relation to each other.

In the center is the Design editor (3), which shows a visual representation
of what the contents of the file will look like when compiled into an Android
app. You can view the visual representation, the XML code, or both.

3. In the upper right corner of the Design editor, above Attributes (4),
find the three icons that look like this:

These represent Code (code only), Split (code + design), and Design
(design only) views.

4. Try selecting the different modes. Depending on your screen size and
work style, you may prefer switching between Code and Design, or
staying in Split view. If your Component Tree disappears, hide and
show the Palette.

Split view:

5. At the lower right of the Design editor you see + and - buttons for
zooming in and out. Use these buttons to adjust the size of what you
see, or click the zoom-to-fit button so that both panels fit on your
screen.

The Design layout on the left shows how your app appears on the device.
The Blueprint layout, shown on the right, is a schematic view of the layout.

6. Practice using the layout menu in the top left of the design toolbar to

display the design view, the blueprint view, and both views side by
side. Depending on the size of your screen and your preference, you
may wish to only show the Design view or the Blueprint view,
instead of both.

7. Use the orientation icon to change the orientation of the layout. This
allows you to test how your layout will fit portrait and landscape
modes.

8. Use the device menu to view the layout on different devices. (This is
extremely useful for testing!)

On the right is the Attributes panel. You'll learn about that later.

Step 2: Explore and resize the Component Tree
1. In fragment_first.xml, look at the Component Tree. If it's not

showing, switch the mode to Design instead of Split or Code.

This panel shows the view hierarchy in your layout, that is, how the views
are arranged in relation to each other.

2. If necessary, resize the Component Tree so you can read at least part
of the strings.

3. Click the Hide icon at the top right of the Component Tree.
The Component Tree closes.
4. Bring back the Component Tree by clicking the vertical label
Component Tree on the left.

Step 3: Explore view hierarchies
1. In the Component Tree, notice that the root of the view hierarchy is a

ConstraintLayout view.

Every layout must have a root view that contains all the other views. The
root view is always a view group, which is a view that contains other views.
A ConstraintLayout is one example of a view group.

2. Notice that the ConstraintLayout contains a TextView, called
textview_first and a Button, called button_first.

3. If the code isn't showing, switch to Code or Split view using the icons
in the upper right corner.

4. In the XML code, notice that the root element is
<androidx.constraintlayout.widget.ConstraintLayout>
. The root element contains a <TextView> element and a
<Button> element.

Step 4: Change property values
1. In the code editor, examine the properties in the TextView element.

2. Click on the string in the text property, and you'll notice it refers to a
string resource, lorem_ipsum.

3. Right-click on the property and click Go To > Declaration or Usages,
values/strings.xml opens with the string highlighted.

4. Change the value of the string property to Hello World!.

5. Switch back to fragment_first.xml.
6. Select textview_first in the Component Tree.

7. Look at the Attributes panel on the right, and open the Declared
Attributes section if needed.

Troubleshooting this step:

● If the Attributes panel is not visible, click the vertical Attributes label at
the top right.

8. In the text field of the TextView in Attributes, notice it still refers to
the string resource @string/lorem_ipsum. Having the strings in a
resource file has several advantages. You can change the value of
string without having to change any other code. This simplifies
translating your app to other languages, because your translators
don't have to know anything about the app code.

9. Run the app to see the change you made in strings.xml. Your app
now shows "Hello World!".

Step 5: Change text display properties
1. With textview_first still selected in the Component Tree, in the

layout editor, in the list of attributes, under Common Attributes,
expand the textAppearance field. (You may need to scroll down to
find it.)

2. Change some of the text appearance properties. For example,
change the font family, increase the text size, and select bold style.
(You might need to scroll the panel to see all the fields.)

3. Change the text color. Click in the textColor field, and enter g.

A menu pops up with possible completion values containing the letter g.
This list includes predefined colors.

4. Select@android:color/darker_gray and press Enter.

Below is an example of the textAppearance attributes after making some
changes.

5. Look at the XML for the TextView. You see that the new properties
have been added.

6. Run your app again and see the changes applied to your Hello World!
String

Step 6: Display all attributes
1. In the Attributes panel, scroll down until you find All Attributes.

If you don't see any attributes in the Attributes panel, make sure
textview_first is still selected in the Component Tree.

2. Scroll through the list to get an idea of the attributes you could set for
a TextView.

5. Add color resources
So far you have learned how to change property values. Next, you will
learn how to create more resources like the string resources you worked
with earlier. Using resources enables you to use the same values in
multiple places, or to define values and have the UI update automatically
whenever the value is changed.

What you'll learn
- How resources are defined.
- Adding and using color resources.
- The results of changing layout height and width.

Step 1: Add color resources

First, you'll learn how to add new color resources.

1. In the Project panel on the left, double-click on res > values >
colors.xml to open the color resource file.

The colors.xml file opens in the editor. So far, two colors have been
defined. These are the colors you can use in your app layout.

Note: Different versions of Android Studio use different values for these
colors, so you may see other colors here.

2. Go back to fragment_first.xml so you can see the XML code for
the layout.

3. Add a new property to the TextView called android:background,
and start typing to set its value to @color. You can add this property
anywhere inside the TextView code.

A menu pops up offering the predefined color resources:

4. Choose @color/black.
5. Change the property android:textColor and give it a value of

@android:color/white.

The Android framework defines a range of colors, including white, so you
don't have to define white yourself.

6. In the layout editor, you can see that the TextView now has a black
background, and the text is displayed in white.

JavaScript

Step 2: Add a new color to use as the screen background
color

1. Back in colors.xml, create a new color resource called
screenBackground:

<color name="screenBackground">#FFEE58</color>

A color can be defined as 3 hexadecimal numbers (#00-#FF, or 0-255)
representing the red, blue, and green (RGB) components. The color you

just added is yellow. Notice that the colors corresponding to the code are
displayed in the left margin of the editor.

Note that a color can also be defined including an alpha value (#00-#FF)
which represents the transparency (#00 = 0% = fully transparent, #FF =
100% = fully opaque). When included, the alpha value is the first of 4
hexadecimal numbers (ARGB).

The alpha value is a measure of transparency. For example, #88FFEE58
makes the color semi-transparent, and if you use #00FFEE58, it's fully
transparent and disappears from the left-hand bar.

2. Go back to fragment_first.xml.
3. In the Component Tree, select the NestedScrollView.

4. In the Attributes panel, select the background property and press
Enter. Type "c" in the field that appears.

5. In the menu of colors that appears, select @color/screenBackground.
Press Enter to complete the selection.

6. Click on the yellow patch to the left of the color value in the
background field.

It shows a list of colors defined in colors.xml. Click the Custom tab to
choose a custom color with an interactive color chooser.

7. Feel free to change the value of the screenBackground color, but
make sure that the final color is noticeably different from the black
and white colors.

Step 3: Explore width and height properties

Now that you have a new screen background color, you will use it to
explore the effects of changing the width and height properties of views.

1. In fragment_first.xml, in the Component Tree, select the
NestedScrollView.

2. In the Attributes panel, find and expand the Layout section.

The layout_width and layout_height properties are both set to
match_parent. The NestedScrollView is the root view of this
Fragment, so the "parent" layout size is effectively the size of your screen.

Tip: All views must have layout_width and layout_height properties.

3. Notice that the entire background of the screen uses the
screenBackground color.

4. Select textview_first. Currently the layout width and height are
wrap_content, which tells the view to be just big enough to enclose its
content (plus padding)

5. Change the layout width to match_constraint, which tells the view to
be as big as whatever it's constrained to.

The width shows 0dp, and the text moves to the left, while the TextView
expands to match the ConstraintLayout except for the button. The
button and the text view are at the same level in the view hierarchy inside
the constraint layout, so they share space.

6. Explore what happens if the height is match_constraint and the width
is wrap_content and vice versa. You can also change the width and
height of the button_first.

Note: When setting layout_height to match_constraint for a TextView, the
view may disappear. In ConstraintLayout, match_constraint (select from
attribute drop-down menu) (or “0dp”) means the view's size will be
determined by its constraints.

If there isn't enough space between the top and bottom constraints, the
TextView might collapse to zero height, making it seem like it has
disappeared.

7. Set both the width and height of the TextView and the Button back
to wrap_content.

6. Add views and constraints
In this task, you will add two more buttons to your user interface, and

update the existing button, as shown below.

What you'll learn
- How to add new views to your layout.
- How to constrain the position of a view to another view.

Step 1: View constraint properties

1. In fragment_first.xml, look at the constraint properties for the
TextView.

These properties define the position of the TextView. Read them
carefully.

You can constrain the top, bottom, left, and right of a view to the top,
bottom, left, and right of other views.

2. Select textview_first in the Component Tree and look at the
Constraint Widget in the Attributes panel.

The square represents the selected view. Each of the grey dots represents
a constraint, to the top, bottom, left, and right; for this example, from the
TextView to its parent, the ConstraintLayout, or to the Next button for the
bottom constraint.

3. Notice that the blueprint and design views also show the constraints
when a particular view is selected. Some of the constraints are jagged
lines, but the one to the Next button is a squiggle, because it's a little
different. You'll learn more about that in a bit.

3. Add android:fillViewport="true" to NestedScrollView
properties.

Step 2: Add buttons and constrain their positions

To learn how to use constraints to connect the positions of views to each
other, you will add buttons to the layout. Your first goal is to add a button
and some constraints, and change the constraints on the Next button.

1. Notice the Palette at the top left of the layout editor. Move the sides if
you need to, so that you can see many of the items in the palette.

2. Click on some of the categories, and scroll the listed items if needed
to get an idea of what's available.

3. Select Button, which is near the top, and drag and drop it onto the
design view, placing it underneath the TextView near the other
button. Notice that a Button has been added to the Component
Tree under ConstraintLayout.

Step 3: Add a constraint to the new button

You will now constrain the top of the button to the bottom of the TextView.

1. Move the cursor over the circle at the top of the Button.

2. Click and drag the circle at the top of the Button onto the circle at
the bottom of the TextView. The Button moves up to sit just below

the TextView because the top of the button is now constrained to
the bottom of the TextView.

3. Take a look at the Constraint Widget in the Layout pane of the
Attributes panel. It shows some constraints for the Button,
including Top -> BottomOf textView.

4. Take a look at the XML code for the button. It now includes the
attribute that constrains the top of the button to the bottom of the
TextView.

5. You may see a warning, "Not Horizontally Constrained". To fix this,
add a constraint from the left side of the button to the left side of the
screen.

6. Also add a constraint to constrain the bottom of the button to the
bottom of the screen.

Before adding another button, relabel this button so things are a little
clearer about which button is which.

1. Click on the button you just added in the design layout.
2. Look at the Attributes panel on the right, and notice the id field.
3. Change the id from button to toast_button.

* you can also modify it via code from the xml file

Step 4: Adjust the Next button

You will adjust the button labeled Next, which Android Studio created for
you when you created the project. The constraint between it and the

TextView looks a little different, a wavy line instead of a jagged one, with
no arrow. This indicates a chain, where the constraints link two or more
objects to each other, instead of just one to another. For now, you'll delete
the chained constraints and replace them with regular constraints.

To delete a constraint:

● In the design view or blueprint view, hold the Ctrl key (Command on
a Mac) and move the cursor over the circle for the constraint until the
circle highlights, then click the circle.

● Or click on one of the constrained views, then right-click on the
constraint and select Delete from the menu.

● Or in the Attributes panel, move the cursor over the circle for the
constraint until it shows an x, then click it.

* You can also delete it by deleting the line in the xml file.

If you delete a constraint and want it back, either undo the action, or
create a new constraint.

Step 5: Delete the chain constraints

1. Click on the Next button, and then delete the constraint from the
bottom of the button to the TextView.

https://web.archive.org/web/20240324083233/https://developer.android.com/reference/android/support/constraint/ConstraintLayout#Chains

2. Click on the TextView, and then delete the constraint from the top of
the text to the Next button.

Step 6: Add new constraints

1. Constrain the right side of the Next button to the right of the screen if
it isn't already.

2. Delete the constraint on the left side of the Next button.
3. Now constrain the top and bottom of the Next button so that the top

of the button is constrained to the bottom of the TextView and the
bottom is constrained to the bottom of the screen. The right side of
the button is constrained to the right side of the screen.

4. Also constrain the bottom of the TextView to the bottom of the
screen.and the top of the TextView to the top of the screen.

5. Add android:fillViewport="true" to NestedScrollView
properties to expand the ConstraintLayout (if you did not add
previously).

It may seem like the views are jumping around a lot, but that's normal as
you add and remove constraints.

Your layout should now look something like this.

* Notice the buttons move when you move textview, since they are
constrained to it.

Step 7: Extract string resources

1. In the fragment_first.xml layout file, find the text property for the
toast_button button.

2. Notice that the text "Button" is directly in the layout field, instead of
referencing a string resource as the TextView does. This will make it
harder to translate your app to other languages.

3. To fix this, click the highlighted code. A light bulb appears on the left.

4. Click the lightbulb. In the menu that pops up, select Extract string
resource.

5. In the dialog box that appears, change the resource name to
toast_button_text and the resource value to Toast and click
OK.

6. Notice that the value of the android:text property has changed to
@string/toast_button_text.

7. Go to the res > values > strings.xml file. Notice that a new string

resource has been added, named toast_button_text. Run the

app to make sure it displays as you expect it to.

You now know how to create new string resources by extracting them from
existing field values. (You can also add new resources to the
strings.xml file manually.) And you know how to change the id of a
view.

Note: The id for a view helps you identify that view distinctly from
other views. You'll use this later to find particular views using the
findViewById() method in your Java code.

Step 8: Update the Next button

The Next button already has its text in a string resource, but you'll make
some changes to the button to match its new role, which will be to generate
and display a random number.

1. As you did for the Toast button, change the id of the Next button from
button_first to random_button in the Attributes panel.

2. If you get a dialog box asking to update all usages of the button, click
Yes. This will fix any other references to the button in the project
code.

3. In strings.xml, right-click on the next string resource.
4. Select Refactor > Rename... and change the name to

random_button_text.

https://developer.android.com/reference/android/view/View

5. Click Refactor to rename your string and close the dialog.
6. Change the value of the string from Next to Random.

7. If you want, move random_button_text to below
toast_button_text.

Step 9: Add a third button

Your final layout will have three buttons, vertically constrained the same,
and evenly spaced from each other.

1. In fragment_first.xml. Drag Random button below the Toast
button. Add another button to the layout, and drop it somewhere
between the Toast button and the Random button, below the

TextView.

2. Add vertical constraints the same as the other two buttons. Constrain
the top of the third button to the bottom of TextView; constrain the
bottom of the third button to the bottom of the screen.

3. Add horizontal constraints from the third button to the other buttons.
Constrain the left side of the third button to the right side of the Toast
button; constrain the right side of the third button to the left side of the
Random button.

Your layout should look something like this:

4.Examine the XML code for fragment_first.xml. Do any of the
buttons have the attribute
app:layout_constraintVertical_bias? It's OK if you do not
see that constraint.

The "bias" constraints allows you to tweak the position of a view to be more
on one side than the other when both sides are constrained in opposite

https://developer.android.com/reference/android/support/constraint/ConstraintLayout.html

JavaScript

directions. For example, if both the top and bottom sides of a view are
constrained to the top and bottom of the screen, you can use a vertical bias
to place the view more towards the top than the bottom.

Here is the XML code for the finished layout. Your layout might have
different margins and perhaps some different vertical or horizontal bias
constraints.The exact values of the attributes for the appearance of the
TextView might be different for your app.

<?xml version="1.0" encoding="utf-8"?>

<androidx.core.widget.NestedScrollView
xmlns:android="http://schemas.android.com/apk/res/android"

xmlns:app="http://schemas.android.com/apk/res-auto"

xmlns:tools="http://schemas.android.com/tools"

android:layout_width="match_parent"

android:layout_height="match_parent"

android:background="@color/screenBackground"

tools:context=".FirstFragment"

android:fillViewport="true">

<androidx.constraintlayout.widget.ConstraintLayout

https://developer.android.com/reference/android/support/constraint/ConstraintLayout.html

android:layout_width="match_parent"

android:layout_height="match_parent"

android:padding="16dp">

<TextView

android:id="@+id/textview_first"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:background="@color/black"

android:fontFamily="sans-serif-condensed"

android:text="@string/lorem_ipsum"

android:textColor="@android:color/white"

android:textSize="30sp"

android:textStyle="bold"

app:layout_constraintBottom_toBottomOf="parent"

app:layout_constraintEnd_toEndOf="parent"

app:layout_constraintStart_toStartOf="parent"

app:layout_constraintTop_toTopOf="parent" />

<Button

android:id="@+id/toast_button"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:text="@string/toast_button_text"

app:layout_constraintBottom_toBottomOf="parent"

app:layout_constraintStart_toStartOf="parent"

app:layout_constraintTop_toBottomOf="@+id/textview_first" />

<Button

android:id="@+id/button2"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:text="Button"

app:layout_constraintBottom_toBottomOf="parent"

app:layout_constraintEnd_toStartOf="@+id/random_button"

app:layout_constraintStart_toEndOf="@+id/toast_button"

app:layout_constraintTop_toBottomOf="@+id/textview_first" />

<Button

android:id="@+id/random_button"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:text="@string/random_button_text"

app:layout_constraintBottom_toBottomOf="parent"

app:layout_constraintEnd_toEndOf="parent"

app:layout_constraintTop_toBottomOf="@+id/textview_first" />

</androidx.constraintlayout.widget.ConstraintLayout>

</androidx.core.widget.NestedScrollView>

Step 10: Get your UI ready for the next task

The next task is to make the buttons do something when they are pressed.
First, you need to get the UI ready.

1. Change the text of the TextView to show 0 (the number zero).
2. Change the id of the last button you added, button2, to

count_button in the Attributes panel in the design editor.
3. In the XML, extract the string resource to count_button_text and

set the value to Count.

The buttons should now have the following text and ids:

Button text id

Left button Toast @+id/toast_button

Middle button Count @+id/count_button

Right button Random @+id/random_button

5. Run the app.

Step 11: Fix errors if necessary
If you edited the XML for the layout directly, you might see some errors

The errors occur because the buttons have changed their id and now
these constraints are referencing non-existent views.

If you have these errors, fix them by updating the id of the buttons in the
constraints that are underlined in red.

7. Update the appearance of the buttons and the
TextView
Your app's layout is now basically complete, but its appearance can be
improved with a few small changes.

Step 1: Add new color resources

1. In colors.xml, change the value of screenBackground to
#2196F3, which is a blue shade in the Material Design palette.

2. Add a new color named buttonBackground. Use the value
#673AB7, which is a darker shade in the purple palette.

<color name="buttonBackground">#673AB7</color>

Step 2: Add a background color for the buttons

1. In the layout, add a background color to each of the buttons. (You can
either edit the XML in fragment_first.xml or use the Attributes
panel, whichever you prefer.)

android:background="@color/buttonBackground"

https://m2.material.io/design/color/the-color-system.html

Step 3: Change the margins of the left and right buttons

1. Give the Toast button a left (start) margin of 24dp and give the
Random button a right (end) margin of 24dp. (Using start and end
instead of left and right makes these margins work for all language
directions.)

One way to do this is to use the Constraint Widget in the Attributes
panel. The number on each side is the margin on that side of the selected
view. Type 24 in the field and press Enter.

Step 4: Update the appearance of the TextView

1. Remove the background color of the TextView, either by clearing
the value in the Attributes panel or by removing the
android:background attribute from the XML code. When you
remove the background, the view background becomes transparent.

2. Increase the text size of the TextView to 72sp.

android:textSize="72sp"

3. Change the font-family of the TextView to sans-serif (if it's not
already).

4. Add an app:layout_constraintVertical_bias property to the
TextView, to bias the position of the view upwards a little so that it is
more evenly spaced vertically in the screen. Feel free to adjust the
value of this constraint as you like. (Check in the design view to see
how the layout looks.)

app:layout_constraintVertical_bias="0.3"

5. You can also set the vertical bias using the Constraint Widget. Click
and drag the number 50 that appears on the left side, and slide it
upwards until it says 30.

6. Make sure the layout_width is wrap_content, and the horizontal
bias is 50
(app:layout_constraintHorizontal_bias="0.5" in XML).

Step 5: Run your app

If you implemented all the updates, your app will look like the following
figure. If you use different colors and fonts, then your app will look a bit
different.

8. Make your app interactive
You have added buttons to your app's main screen, but currently the
buttons do nothing. In this task, you will make your buttons respond when
the user presses them.

First you will make the Toast button show a pop-up message called a toast.
Next you will make the Count button update the number that is displayed in
the TextView.

What you'll learn

● How to find a view by its ID.
● How to add click listeners for a view.
● How to set and get property values of a view from your code.

Step 1: Enable auto imports

To make your life easier, you can enable auto-imports so that Android
Studio automatically imports any classes that are needed by the Java code.

1. In Android Studio, open the settings editor by going to File > New
Projects Setup > Settings for New Projects… > Other Settings

https://developer.android.com/guide/topics/ui/notifiers/toasts

2. Select Auto Imports. In the Java section, make sure Add
Unambiguous Imports on the fly is checked.

3. Close the settings editor by pressing OK.

Step 2: Show a toast

In this step, you will attach a Java method to the Toast button to show a
toast when the user presses the button. A toast is a short message that
appears briefly at the bottom of the screen.

Java

1. Open FirstFragment.java (app > java >
com.example.android.myfirstapp > FirstFragment).

This class has only two methods, onCreateView() and
onViewCreated(). These methods execute when the fragment starts.

As mentioned earlier, the id for a view helps you identify that view distinctly
from other views. Using the findViewByID() method, your code can find
the random_button using its id, R.id.random_button.

2. Copy and paste the following code into onViewCreated(). It sets
up a click listener for the random_button, which was originally
created as the Next button.

view.findViewById(R.id.random_button).setOnClickListener(new
View.OnClickListener() {

@Override

public void onClick(View view) {

NavHostFragment.findNavController(FirstFragment.this)

.navigate(R.id.action_FirstFragment_to_SecondFragment);

}

});

https://developer.android.com/reference/android/view/View#ids

Java

Here is what this code does:

● Use the findViewById() method with the id of the desired view as
an argument, then set a click listener on that view.

● In the body of the click listener, use an action, which in this case is for
navigating to another fragment, and navigate there. (You will learn
about that later.)

3. Just below that click listener, add code to set up a click listener for the
toast_button, which creates and displays a toast. Here is the
code:

view.findViewById(R.id.toast_button).setOnClickListener(new
View.OnClickListener() {

@Override

public void onClick(View view) {

Toast myToast = Toast.makeText(getActivity(), "Hello toast!",
Toast.LENGTH_SHORT);

myToast.show();

}

});

4. Run the app and press the Toast button. Do you see the toasty
message at the bottom of the screen?

5. If you want, extract the message string into a resource as you did for
the button labels.

You have learned that to make a view interactive you need to set up a click
listener for the view which says what to do when the view (button) is clicked
on. The click listener can either:

● Implement a small amount of code directly.
● Call a method that defines the desired click behavior in the activity.

Step 3: Make the Count button update the number on the
screen

The method that shows the toast is very simple; it does not interact with
any other views in the layout. In the next step, you add behavior to your
layout to find and update other views.

Update the Count button so that when it is pressed, the number on the
screen increases by 1.

Java

1. In the fragment_first.xml layout file, notice the id for the
TextView:

2. In FirstFragment.java, add a click listener for the
count_button below the other click listeners in
onViewCreated(). Because it has a little more work to do, have it
call a new method, countMe().

view.findViewById(R.id.count_button).setOnClickListener(new
View.OnClickListener() {

@Override
public void onClick(View view) {

countMe(view);
}

});

Java

Java

Java

3. In the FirstFragment class, add the method countMe() that
takes a single View argument. This method will be invoked when the
Count button is clicked and the click listener called.

private void countMe(View view) {

}

4. Get the value of the showCountTextView. You will define that in the
next step.

...

// Get the value of the text view
String countString = showCountTextView.getText().toString();

5. Convert the value to a number, and increment it.

...
// Convert value to a number and increment it
Integer count = Integer.parseInt(countString);
count++;

Java

Java

6. Display the new value in the TextView by programmatically setting
the text property of the TextView.

...
// Display the new value in the text view.
showCountTextView.setText(count.toString());

Here is the whole method:

private void countMe(View view) {

// Get the value of the text view

String countString = showCountTextView.getText().toString();

// Convert value to a number and increment it

Integer count = Integer.parseInt(countString);

count++;

// Display the new value in the text view.

showCountTextView.setText(count.toString());

}

Step 4: Cache the TextView for repeated use

You could call findViewById() in countMe() to find
showCountTextView. However, countMe() is called every time the
button is clicked, and findViewById() is a relatively time consuming
method to call. So it is better to find the view once and cache it.

1. In the FirstFragment class before any methods, add a member
variable for showCountTextView of type TextView.

TextView showCountTextView;

2. In onCreateView(), you will call findViewById() to get the
TextView that shows the count. The findViewById() method
must be called on a View where the search for the requested ID

Java

Java

Java

should start, so assign the layout view that is currently returned to a
new variable, fragmentFirstLayout, instead.

// Inflate the layout for this fragment
View fragmentFirstLayout = inflater.inflate(R.layout.fragment_first, container,
false);

3. Call findViewById() on fragmentFirstLayout, and specify the
id of the view to find, textview_first. Cache that value in
showCountTextView.

...
// Get the count text view
showCountTextView = fragmentFirstLayout.findViewById(R.id.textview_first);

4. Return fragmentFirstLayout from onCreateView().

return fragmentFirstLayout;

Here is the whole method and the declaration of showCountTextView:

TextView showCountTextView;

@Override

public View onCreateView(

LayoutInflater inflater, ViewGroup container,

Bundle savedInstanceState

) {

// Inflate the layout for this fragment

View fragmentFirstLayout = inflater.inflate(R.layout.fragment_first,
container, false);

// Get the count text view

showCountTextView = fragmentFirstLayout.findViewById(R.id.textview_first);

return fragmentFirstLayout;

}

Hint: if your app is no longer able to run after this implementation, try replacing line View
fragmentFirstLayout = inflater.inflate(R.layout.fragment_first, container, false); with
View fragmentfirstlayout = binding.getRoot;

5. Run your app. Press the Count button and watch the count update.

9. Implement the second fragment
So far, you've focused on the first screen of your app. Next, you will update
the Random button to display a random number between 0 and the current
count on a second screen.

What you'll learn

● How to pass information to a second fragment.

Update the layout for the second fragment
The screen for the new fragment will display a heading title and the random
number. Here is what the screen will look like in the design view:

The %d indicates that part of the string will be replaced with a number. The
R is just a placeholder.

Step 1: Add a TextView for the random number
Open fragment_second.xml (app > res > layout >
fragment_second.xml) and switch to Design View if needed. Notice
that it has a ConstraintLayout that contains a TextView and a Button.
Remove the chain constraints between the TextView and the Button
by clicking on them and using the delete key (or right-click to remove
them via the context menu).

Add another TextView from the palette and drop it near the middle of
the screen. This TextView will be used to display a random number
between 0 and the current count from the first Fragment.

Set the id to @+id/textview_random (textview_random in the
Attributes panel.)

Constrain the top edge of the new TextView to the bottom of the first
TextView, the left edge to the left of the screen, and the right edge to
the right of the screen, and the bottom to the top of the Previous
button.

Set both width and height to wrap_content.

Unset

Set the textColor to @android:color/white, set the textSize to 72sp,
and the textStyle to bold.

Set the text to "R". This text is just a placeholder until the random
number is generated.

Set the layout_constraintVertical_bias to 0.45.

This TextView is constrained on all edges, so it's better to use a
vertical bias than margins to adjust the vertical position, to help the
layout look good on different screen sizes and orientations. 10. If you
get a warning "Not Horizontally Constrained," add a constraint from
the start of the button to the left side of the screen and the end of the
button to the right side of the screen.

Here is the XML code for the TextView that displays the random
number:

<TextView
android:id="@+id/textview_random"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="R"

Unset

android:textColor="@android:color/white"
android:textSize="72sp"
android:textStyle="bold"
app:layout_constraintBottom_toTopOf="@+id/button_second"
app:layout_constraintEnd_toEndOf="parent"
app:layout_constraintStart_toStartOf="parent"
app:layout_constraintTop_toBottomOf="@+id/textview_second"
app:layout_constraintVertical_bias="0.45" />

Step 2: Update the TextView to Display the Header

1. In fragment_second.xml, select textview_second, which currently has
the text "Hello second fragment. Arg: %1$s" in the
hello_second_fragment string resource.

2. If android:text isn't set, set it to the hello_second_fragment string
resource.

android:text="@string/hello_second_fragment"

3. Change the id to textview_header in the Attributes panel.
4. Set the width to match_constraint, but set the height to wrap_content,

so the height will change as needed to match the height of the
content.

5. Set top, left and right margins to 24dp. Left and right margins may
also be referred to as "start" and "end" to support localization for right
to left languages.

6. Remove any bottom constraint.
7. Set the text color to @color/colorPrimaryDark and the text size to

24sp.
8. In strings.xml, change hello_second_fragment to "Here is a random

number between 0 and %d."

Unset

9. Use Refactor > Rename... to change the name of
hello_second_fragment to random_heading.

Here is the XML code for the TextView that displays the heading:

<TextView
android:id="@+id/textview_header"
android:layout_width="0dp"
android:layout_height="wrap_content"
android:layout_marginStart="24dp"
android:layout_marginLeft="24dp"
android:layout_marginTop="24dp"
android:layout_marginEnd="24dp"
android:layout_marginRight="24dp"
android:text="@string/random_heading"
android:textColor="@color/colorPrimaryDark"
android:textSize="24sp"
app:layout_constraintEnd_toEndOf="parent"
app:layout_constraintStart_toStartOf="parent"
app:layout_constraintTop_toTopOf="parent" />

Unset

Step 3: Change the background color of the layout

Give your new activity a different background color than the first activity:

1. In colors.xml, add a new color resource:

<color name="screenBackground2">#26C6DA</color>

2. In the layout for the second activity, fragment_second.xml, set the
background of the ConstraintLayout to the new color.

In the Attributes panel:

Unset

Or in XML:

android:background="@color/screenBackground2"

Your app now has a completed layout for the second fragment. But if you
run your app and press the Random button, it may crash. The click handler
that Android Studio set up for that button needs some changes. In the next
task, you will explore and fix this error.

Step 4: Examine the navigation graph

When you created your project, you chose Basic Activity as the template
for the new project. When Android Studio uses the Basic Activity template
for a new project, it sets up two fragments, and a navigation graph to
connect the two. It also set up a button to send a string argument from the
first fragment to the second. This is the button you changed into the
Random button. And now you want to send a number instead of a string.

1. Open nav_graph.xml (app > res > navigation > nav_graph.xml).

A screen similar to the Layout Editor in Design view appears. It shows the
two fragments with some arrows between them. You can zoom with + and -
buttons in the lower right, as you did with the Layout Editor.

2. You can freely move the elements in the navigation editor. For
example, if the fragments appear with SecondFragment to the left,
drag FirstFragment to the left of SecondFragment so they appear in
the order you work with them.

Unset

Step 5: Enable SafeArgs

This will enable SafeArgs in Android Studio.

1. Open Gradle Scripts > build.gradle.kts (Project: My First App)
2. Find the dependencies section In the buildscript section, and add the

following lines:

val navVersion = "2.3.0-alpha04"
classpath("androidx.navigation:navigation-safe-args-gradle-plugin:$n
avVersion")

Unset

3. Open Gradle Scripts > build.gradle.kts (Module: app)
4. Add the following line to enable SafeArgs under the plugins section:

id("androidx.navigation.safeargs")

5. Android Studio should display a message about the Gradle files being
changed. Click Sync Now on the right hand side.

After a few moments, Android Studio should display a message in the Sync

tab that it was successful:

6. Choose Build > Make Project. This should rebuild everything so that
Android Studio can find FirstFragmentDirections
Troubleshooting: If the sync was not successful, confirm that you added the correct lines to
the correct Gradle file. If there are still problems, check the developer's guide about Safe

Args for an updated nav_version or other changes.

Step 6: Create the argument for the navigation action
1. In the navigation graph, click on FirstFragment, and look at the

Attributes panel to the right. (If the panel isn't showing, click on the
vertical Attributes label to the right.)

2. In the Actions section, it shows what action will happen for navigation,
namely going to SecondFragment.

3. Click on SecondFragment, and look at the Attributes panel.

https://developer.android.com/guide/navigation/use-graph/pass-data#Safe-args
https://developer.android.com/guide/navigation/use-graph/pass-data#Safe-args

The Arguments section shows Nothing to show.

4. Click on the + in the Arguments section.
5. In the Add Argument dialog, enter myArg for the name and set the

type to Integer, then click the Add button.

Step 7: Send the count to the second fragment

The Next/Random button was set up by Android Studio to go from the first
fragment to the second, but it doesn't send any information. In this step
you'll change it to send a number for the current count. You will get the
current count from the text view that displays it, and pass that to the second
fragment.

1. Open FirstFragment.java (app > java > com.example.myfirstapp >
FirstFragment)

2. Find the method onViewCreated() and notice the code that sets up
the click listener to go from the first fragment to the second.

3. Replace the code in that click listener with a line to find the count text
view, textview_first.

Java

Java

Java

Java

int currentCount =
Integer.parseInt(showCountTextView.getText().toString());

4. Create an action with currentCount as the argument to
actionFirstFragmentToSecondFragment().

FirstFragmentDirections.ActionFirstFragmentToSecondFragment action =
FirstFragmentDirections.actionFirstFragmentToSecondFragment(currentC
ount);

5. Add a line to find the nav controller and navigate with the action you
created.

NavHostFragment.findNavController(FirstFragment.this).navigate(actio
n);

Here is the whole method, including the code you added earlier:

public void onViewCreated(@NonNull View view, Bundle
savedInstanceState) {

super.onViewCreated(view, savedInstanceState);

view.findViewById(R.id.random_button).setOnClickListener(new
View.OnClickListener() {

@Override
public void onClick(View view) {

int currentCount =
Integer.parseInt(showCountTextView.getText().toString());

FirstFragmentDirections.ActionFirstFragmentToSecondFragment action =
FirstFragmentDirections.actionFirstFragmentToSecondFragment(currentC
ount);

NavHostFragment.findNavController(FirstFragment.this).navigate(actio
n);

}
});

view.findViewById(R.id.toast_button).setOnClickListener(new
View.OnClickListener() {

@Override
public void onClick(View view) {

Toast myToast = Toast.makeText(getActivity(), "Hello
toast!", Toast.LENGTH_SHORT);

myToast.show();
}

});

view.findViewById(R.id.count_button).setOnClickListener(new
View.OnClickListener() {

@Override
public void onClick(View view) {

countMe(view);
}

});
}

6. Run your app. Click the Count button a few times. Now when you
press the Random button, the second screen shows the correct string
in the header, but still no count or random number, because you need
to write some code to do that.

Step 8: Update SecondFragment to compute and display a
random number

Java

Java

Java

Java

You have written the code to send the current count to the second
fragment. The next step is to add code to SecondFragment.java to retrieve
and use the current count.

1. In SecondFragment.java, add an import for navArgs to the list of
imported libraries.

import androidx.navigation.fragment.navArgs;

2. In the onViewCreated() method below the line that starts with super,
add code to get the current count, get the string and format it with the
count, and then set it for textview_header.

Integer count =
SecondFragmentArgs.fromBundle(getArguments()).getMyArg();
String countText = getString(R.string.random_heading, count);
TextView headerView =
view.getRootView().findViewById(R.id.textview_header);
headerView.setText(countText);

3. Get a random number between 0 and the count.

Random random = new java.util.Random();
Integer randomNumber = 0;
if (count > 0) {

randomNumber = random.nextInt(count + 1);
}

4. Add code to convert that number into a string and set it as the text for
textview_random.

TextView randomView =
view.getRootView().findViewById(R.id.textview_random);

randomView.setText(randomNumber.toString());

5. Run the app. Press the Count button a few times, then press the
Random button. Does the app display a random number in the new
activity?

Congratulations, you have built your first Android app!

10. Learn more
The intention of this codelab was to get you started building Android apps.
We hope you want to know a lot more though, like how do I save data?
How do I run background tasks? How do I display a list of photos? How do
I ...

We encourage you to keep learning. We have more Android courses built
by Google to help you on your learning journey.

Written tutorials

● Android Developer Fundamentals teaches programmers to build
Android apps. This course is also available in some schools.

● Kotlin Bootcamp codelabs course is an introduction to Kotlin for
programmers. You need experience with an object oriented
programming language (Java, C++, Python) to take this course..

● Find more at developer.android.com, the official Android developer
documentation from Google.

These interactive, video-based courses were created by Google experts in
collaboration with Udacity. Take these courses at your own pace in your
own time.

● Developing Android Apps in Kotlin: If you know how to program, learn
how to build Android apps. This course uses Kotlin.

● Kotlin Bootcamp for Programmers: This is an introduction to Kotlin for
programmers. You need some experience with an object oriented
programming language (Java, C++, Python) to take this course.

https://developer.android.com/courses/android-basics-compose/course?gad_source=1&gclid=Cj0KCQjw0Oq2BhCCARIsAA5hubXK0FX5OotPxmjXXth1lEW2YBxlXjwtUiP6C9mPCDUFBrvfEFFFfcoaAl9QEALw_wcB&gclsrc=aw.ds
https://developer.android.com/courses/kotlin-bootcamp/overview
http://developer.android.com
https://www.udacity.com/course/developing-android-apps-with-kotlin--ud9012
https://www.udacity.com/course/kotlin-bootcamp-for-programmers--ud9011

