Code Conventions

Java Code Conventions

* Search “java code conventions”
* Open oracle page

* http://www.oracle.com/technetwork/java/codeconvtoc-136057.html

* Information in these slides is copyrighted:

Copyright 1995-1999 Sun Microsystems, Inc. All rights reserved. Used by
permission.

Why have code conventions?

* 80% of the lifetime cost of a piece of software goes to
maintenance.

» Hardly any software is maintained for its whole life by the
original author.

* Code conventions improve the readability of the software,
allowing engineers to understand new code more quickly
and thoroughly.

* If you ship your source code as a product, you need to
make sure it is as well packaged and clean as any other
product you create.

File Suffixes

e Java software uses the following file suffixes:
» Java source files (.java)
* Java bytecode (.class)

Java Source Files

e Java source files have the following ordering:
* Beginning comments
* Package and Import statements
* Class and interface declarations

Beginning Comments

All source files should
begin with a c-style
comment that lists the
class name, version
information, date, and
copyright notice:

Classname
Version information
Date

Copyright notice
/

* % X X X F X X X

https://www.jetbrains.com/help/idea/generating-and-updating-copyright-notice.html

* Tasks

* Add beginning comments to Tweet.java
* Create copyright notice

Package and Import
Statements

The first non-comment
line of most Java

source files is package java.awt;

a package statement.

After that, import
statements can follow.

import java.awt.peer.CanvasPeer;

Order of Class/Interface
Declarations

ass/interface documentation comment (/**...*/)
assf/interface statement

ass/interface implementation comment (/*...*/), if
necessary

 Class (static) variables
* Order: public, protected, no access modifier, private

* Instance variables
* Order: public, protected, no access modifier, private

e Constructors
 Methods

* Grouped by functionality, rather than scope or accessibility

Lines

* Avoid lines longer than 8o characters.

* When an expression will not fit on a single line, break it
according to these general principles:
* Break after a comma.
* Break before an operator.

* Align the new line with the beginning of the expression at the
same level on the previous line.

* If the above rules lead to confusing code or to code that's squished
up against the right margin, just indent 8 spaces instead.

Lines: break after a comma

someMethod (longExpressionl, longExpression2, longExpression3,
longExpression4, longExpression5);

var = someMethodl (longExpressionl,
someMethod?2 (longExpression2,
longExpression3));

Lines: break before an operator

longNamel = longName2 * (longName3 + longName4 - longName5)
+ 4 * longnameé6; // PREFER

longNamel = longName2 * (longName3 + longName4
- longName5) + 4 * longname6; // AVOID

The first is preferred, since the break occurs outside the
parenthesized expression.

Lines: indenting method
declarations

//CONVENTIONAL INDENTATION
someMethod(int anArg, Object anotherArg, String yetAnotherArg,
Object andStillAnother) {

}

//INDENT 8 SPACES TO AVOID VERY DEEP INDENTS

private static synchronized horkingLongMethodName(int anArg,
Object anotherArg, String yetAnotherArg,
Object andStillAnother) {

Tab = 8 spaces

Comments: block comments

e Multi-line comment.

/*
* Here is a block comment.

*/

Comments: line comments

* If comment cannot fit on a single line, follow block
comment format.

* Indent to the level of the code that follows.
if (condition) {

/* Handle the condition. */

Comments: trailing comments

* Short comments on the same line of code as they
describe.

» Shift far enough to the right to separate them from code.
* If more than one, indent them all to the same tab setting.

if (a == 2) {
return TRUE; /* special case */
} else {
return isPrime(a); /* works only for odd a */

}

Comments: end-of-line
comments

Comment out a complete line or a
partial line: Comment out sections of code:

//if (bar > 1) {
if (foo > 1) { //
// // Do a triple-flip.
... //
! /7%

else {
return false; // Explain why here. //else {

} // return false;

/7}

// Do a double-flip.

Declarations: number per line

* One declaration per line.

int level; // indentation level
int size; // size of table

is preferred over

int level, size;

Declarations: initialization &
placement

* [nstance variables: initialize in constructor.

* Local variables: initialize at declaration, put at beginning
of block.

void myMethod() {
int intl = 0; // beginning of method block

if (condition) {
int int2 = 0; // beginning of "if" block

Declarations: initialization &
placement

* Avoid local declarations that hide declarations at higher
levels.

* Do not declare the same variable name in an inner block.
int count;

myMethod () {
if (condition) {
int count = 0; // AVOID!

Declarations: classes and
interfaces

* No space between a method name and the parenthesis "("
starting its parameter list.

class Sample extends Object {
int ivarl;
int ivar2;

Sample(int i, int j) {
ivarl = 1i;
ivar2 = j;

}

int emptyMethod() {}

Declarations: classes and
interfaces

* Open brace "{" appears at the end of the same line as the
declaration statement.

* Closing brace "}" starts a line by itself indented to match
its corresponding opening statement, except when it is a
null statement the "}" should appear immediately after the

II{II
class Sample extends Object {

int ivarl;
int ivar2;

Sample(int i, int j) {
ivarl = i;
ivar2 = j;

}

int emptyMethod() {}

Declarations: classes and
interfaces

* Methods are separated by a blank line.

class Sample extends Object {
int ivarl;
int ivar2;

Sample(int i, int j) {
ivarl = 1i;
ivar2 = j;

}

int emptyMethod() {}

Statements: simple statements

e Each line should contain at most one statement.

argv++; // Correct
argc--; // Correct
argv++; argc--; // AVOID!

Statements: return statements

* Areturn statement with a value should not use
parentheses unless they make the return value more
obvious in some way.

return;
return myDisk.size();

return (size ? size : defaultSize);

Statements: if, if else,
if else-if else

statements

if (condition) {

If-else statements statenents;
should have the e coonaieion <
fO”OWIng form statements;

} else {
statements;

}

if (condition) {
statements;

} else if (condition) {
statements;

} else {
statements;

}

Note: if statements always use braces, {}. Avoid the following error-prone form:

if (condition) //AVOID! THIS OMITS THE BRACES {}!
statement;

Statements: for and while

for (initialization; condition; update) {
statements;

}

while (condition) {
statements;

}

An empty while statement should have the following form:

while (condition);

Statements: do-while and switch

switch (condition) {

case ABC:
statements; statements;

} while (condition); /* falls through */
case DEF:
statements;
break;
case XYZ:
statements;
break;
default:
statements;
break;

do {

Statements: try-catch

try {
statements;

} catch (ExceptionClass e) {
statements;

}

White Space: blank lines

* Two blank lines should always be used in the following
circumstances:
* Between sections of a source file
* Between class and interface definitions

* One blank line should always be used in the following
circumstances:
* Between methods
* Between the local variables in a method and its first statement
* Before a block or single-line comment
* Between logical sections inside a method to improve readability

White Space: blank spaces

* A blank space should appear after commas in argument
lists.

* A keyword followed by a parenthesis should be separated

by a space. while (true) {
}

White Space: blank spaces

* All binary operators except ". " should be separated from
their operands by spaces.

* Blank spaces should never separate unary operators:
* Unary plus operator: +
* Unary minus operator: - A
* Increment operator: ++ a=(a+b)/ (c*d)j
* Decrement operator: -- while (d++ = s++) {
* Logical compliment operator: !B nH;

printSize("size is " + foo + "\n");

White Space: blank spaces

* The expressions in a for statement should be separated by
blank spaces.

for (exprl; expr2; expr3)

White Space: blank spaces

* Casts should be followed by a blank space.

myMethod((byte) aNum, (Object) x);
myMethod((int) (cp + 5), ((int) (i + 3))
+1);

Naming Conventions: packages

* All lowercase ASCII letters.

* Top-level domain names, then organization’s own internal
naming conventions.

om.sun.eng
om.apple.quicktime.v2

edu.cmu.cs.bovik.cheese

Naming Conventions: classes and
interfaces

* Should be nouns, in mixed case, with the first letter of
each internal word capitalized.

» Keep names simple and descriptive.

* Use whole words; avoid acronyms and abbreviations,

unless the abbreviation is more widely used than the long
form, such as URL or HTML.

lass Raster;
lass ImageSprite;

Naming Conventions: methods

* Methods should be verbs, in mixed case with the first
letter lowercase, and with the first letter of each internal
word capitalized.

Naming Conventions: variables

* Variable names should not start with underscore _ or
dollar sign $ characters, even though both are allowed.

* Should be short yet meaningful.

* One-character variable names should be avoided except
for temporary "throwaway" variables.

* Common names for temporary variables are i, j, k, m,
and n for integers; ¢, d, and e for characters.

Naming Conventions: constants

* The names of variables declared class constants should be
all uppercase with words separated by underscores ("_").

static final int MIN_WIDTH = 4;
static final int MAX _WIDTH =

static final int GET_THE_CPU =

Acknowledgements

* Slides based on Winter 2017 introduction slides

References

* http://www.oracle.com/technetwork/java/javase/docume
ntation/codeconvtoc-136057.html

