
Unit Testing with
JUnit

Unit Testing

A unit test is a piece of code that

performs a test on another piece of

code in isolation.

Each unit test is independent from each

other.

A unit test can be executed

automatically, without user intervention

Why write unit tests?

It ensures the code works as expected

at the time the code is written

after subsequent changes

Helps refactoring

Works as documentation of tests

Unit Testing Myths

Writing Unit tests takes a lot of time.

With a little of practice, take the

same time as testing manually

In the long run, saves you a lot of

time, helping you detect bugs

introduced later in your code

JUnit

Is the most popular Unit Testing

Framework for Java

2 Versions available

3.x

4.x (Requires Java 5) Use this
version

Writing Test Cases

Import JUnit packages

import org.junit.*;

import static org.junit.Assert.*;

Each test method is annotated with

@Test

@Test

! public void testAddBook()

// Write test code here...

! }

Class to be tested

public interface BookLibrary {

! public boolean addBook(Book book);

! public boolean removeBook(Book book);

! public int getBookCount();

! public Book searchBook(String isbn);

! public List<Book> getSorted();

}

Test Method
@Test

! public void testAddBook() {

! ! Book book = new Book("1-930110-99-5", "JUnit in Action", "Vincent Massol");

! !

! ! /* Initially, the library is empty */

! ! assertEquals(0, library.getBookCount());

! !

! ! /* Add the book */

! ! boolean res = library.addBook(book);

! !

! ! /* The book was added */

! ! assertTrue(res);

! !

! ! /* The library now contain one book */

! ! assertEquals(1, library.getBookCount());

! !

! ! /* The library contains the book added */

! ! assertEquals(book, library.searchBook("1-930110-99-5"));

! }

Other methods

A method with @Before is called before

each test.
/**

! * This method is executed before each test.

! */

! @Before

! public void setUp() throws Exception {

! ! library = new BookLibraryImpl();

! }

Use them to create/destroy objects

shared among methods

Other methods

A method with @After is called after

each test.

Methods with @BeforeClass and

@AfterClass run once before and after

all test cases.

A method with @Ignore is not run.

Handling Exceptions

The “expected” parameter is used when

a test expects an exception

@Test(expected = ArithmeticException.class)

public void divisionWithException() {

! // divide by zero

! simpleMath.divide(1, 0);

}

The test fails if no exception is thrown

AssertMethods
Used to test conditions inside test methods

assertTrue(...): Tests if the parameter is true

assertFalse(...): Tests if the parameter is false

assertEquals(...): Tests if the two parameters are equal (equals

method)

assertSame(...): Tests if the two parameters are the same (==)

assertNotSame(...): Tests if the two parameters are not the same.

assertNotNull(...): Test if the parameter is not null.

assertNull(...): Tests if the parameter is null.

fail(): always fails.

Complete Test Case
import org.junit.*;

import static org.junit.Assert.*;

public class BookLibraryTest {

! private BookLibrary library;

! @Before
! public void setUp() throws Exception {

! ! library = new BookLibraryImpl();
! }

! @Test

! public void testAddBook() {
! ! Book book = new Book("1-930110-99-5", "JUnit in Action", "Vincent Massol");

! ! assertEquals(0, library.getBookCount()); //Initially, the library is empty

! !

! ! boolean res = library.addBook(book); // Add the book

! ! assertTrue(res); // Test that the book was added
! ! assertEquals(1, library.getBookCount()); // The library now contain one book

! ! assertEquals(book, library.searchBook("1-930110-99-5")); //The library contains the book added
! }

}

Complete Test Case
import org.junit.*;

import static org.junit.Assert.*;

public class BookLibraryTest {

! private BookLibrary library;

! @Before
! public void setUp() throws Exception {

! ! library = new BookLibraryImpl();
! }

! @Test

! public void testAddBook() {
! ! Book book = new Book("1-930110-99-5", "JUnit in Action", "Vincent Massol");

! ! assertEquals(0, library.getBookCount()); //Initially, the library is empty

! !

! ! boolean res = library.addBook(book); // Add the book

! ! assertTrue(res); // Test that the book was added
! ! assertEquals(1, library.getBookCount()); // The library now contain one book

! ! assertEquals(book, library.searchBook("1-930110-99-5")); //The library contains the book added
! }

}

Is this test case
enough to test the
method?

Guidelines for writing
tests

Test for the main flow (the happy path)

Tests for the main alternative flows

Test for boundary conditions (such as

null arguments, negative numbers, etc)

Some pitfalls

Classes that call static methods are

difficult to test.

Be careful with your implementation

of the Singleton pattern!!

Use a factory.

Entangled designs may be very difficult

to test.

