Unit Testing with

JUnit

Unit Testing

O A unit test is a piece of code that
performs a test on another piece of
code in isolation.

O Each unit test is independent from each
other.

O A unit test can be executed
automatically, without user intervention

Why write unit tests?

O It ensures the code works as expected
O at the time the code is written

O after subsequent changes

O Helps refactoring
O Works as documentation of tests

Unit Testing Myths

O Writing Unit tests takes a lot of time.

O With a little of practice, take the

same time as testing manually

O In the long run, saves you a lot of
time, helping you detect bugs
iIntroduced later in your code

JUnit

O Is the most popular Unit Testing
Framework for Java

O 2 Versions available

G 3.X

O 4.x (Requires Java 5) —— Use this
Version

Writing Test Cases

O Import JUnit packages

,"\

import org.junit.*;
import static org.junit.Assert.*;

O Each test method is annotated with
@Test

@Test
public void testAddBook()

// Write test code here...

Class to be tested

“\

public interface BookLibrary {
public boolean addBook(Book book);
public boolean removeBook(Book book);
public int getBookCount();
public Book searchBook(String isbn);

public List<Book> getSorted();

Test Method

@Test
public void testAddBook() {
Book book = new Book("1-930110-99-5", "JUnit in Action", "Vincent Massol");

/* Initially, the library is empty */
assertEquals(@, library.getBookCount());

/* Add the book */
boolean res = library.addBook(book);

/* The book was added */
assertTrue(res);

/* The library now contain one book */
assertEquals(l, library.getBookCount());

/* The library contains the book added */
assertEquals(book, library.searchBook("1-930110-99-5"));

Other methods

O A method with @Before is called before
each test.

/**

* This method is executed before each test.
*/

@Before
public void setUp() throws Exception {

library = new BookLibraryImpl();
}

O Use them to create/destroy objects
shared among methods

Other methods

A method with @After is called after
each test.

Methods with @BeforeClass and
@AfterClass run once before and after
all test cases.

A method with @Ignore is not run.

Handling Exceptions

O The “expected” parameter is used when
a test expects an exception

\

@Test(expected = ArithmeticException.class)
public void divisionWithException() {

// divide by zero

simpleMath.divide(l, 0);
ks

O The test fails if no exception is thrown

AssertMethods

O Used to test conditions inside test methods

O

O

assertTrue(...): Tests if the parameter is true
assertFalse(...): Tests if the parameter is false

assertEquals(...): Tests if the two parameters are equal (equals
method)

assertSame(...): Tests if the two parameters are the same (==)
assertNotSame(...): Tests if the two parameters are not the same.
assertNotNull(...): Test if the parameter is not null.

assertNull(...): Tests if the parameter is null.

fail(): always fails.

Complete Test Case

fimport org.junit.*;
import static org.junit.Assert.*;

%public class BookLibraryTest {

private BookLibrary library;

@Before
public void setUp() throws Exception {

library = new BookLibraryImpl();
}

@Test

public void testAddBook() {
Book book = new Book("1-930110-99-5", "JUnit in Action", "Vincent Massol");

assertkquals(@, library.getBookCount()); //Initially, the library is empty

boolean res = library.addBook(book); // Add the book

assertTrue(res); // Test that the book was added

assertEquals(l, library.getBookCount()); // The library now contain one book
assertEquals(book, library.searchBook("1-930110-99-5")); //The library contains the book added

Complete Test Case

!import org.junit.*;

| . - L
import static org.junit.Assert.*;

s this test case

public class BookLibraryTest {

private BookLibrary library; 81/\/0'/(,614 tO tCSt the

@Before Ci

public void setUp() throws Exception { metho ?
library = new BookLibraryImpl();

}

@Test

public void testAddBook() {
Book book = new Book("1-930110-99-5", "JUnit in Action", "Vincent Massol");

assertkquals(@, library.getBookCount()); //Initially, the library is empty

boolean res = library.addBook(book); // Add the book

assertTrue(res); // Test that the book was added

assertEquals(l, library.getBookCount()); // The library now contain one book
assertEquals(book, library.searchBook("1-930110-99-5")); //The library contains the book added

Guidelines for writing
tests

O Test for the main flow (the happy path)
O Tests for the main alternative flows

O Test for boundary conditions (such as
null arguments, negative numbers, etc)

Some pitfalls

O Classes that call static methods are
difficult to test.

O Be careful with your implementation
of the Singleton pattern!!

O Use a factory.

O Entangled designs may be very difficult
to test.

