Firestore

CMPUT 301
FALL 2025

S

Firebase

Snehal Ray
Reza Abdollahzadeh

Preparations

1. Fork the starter code repo from github
2. Clone the repo
3. Open Android Studios and initialize the project

825® O ©

.
The First Look e

London

. . V
e The project continues where we left off e

e Alist of cities and province abbreviations with the
ability to
o Add city
o Edit an existing city

e What we are going to do:
o Send this data to the cloud (FireStore)
o Synchronize after each action
o TODO: introduce Delete action

v48

AB

London

BC

Create a Firestore project

1. Go to https://console.firebase.google.com/ : The firestore website
2. Signin

3. Create a project o]

Welcome back to Firebase!

@ Try an Al-powered trip planner app
Deploy a sample that uses Firestore, Authentication,

https://console.firebase.google.com/

e Input the project name (the name is arbitrary)

test-list (sparkplan)

-+ Add app

e C(lick on Add App and then click on android

e Android project name: com.example.lab5 starter
e You should be able to download a google-services.json file

e Download and then add config file Instructions for Android Studio below | Unity[4 C++[2

&, Download google-services.json

Switch to the Project view in Android Studio to see

your project root directory.) 'Sa~ [3MyApplication [My Application]
> [.gradle
> [.idea
v [3app

Move your downloaded google-services. json file O libs

into your module (app-level) root directory. e
@ .gitignore

&2 build.gradle.kts

Project v 0 <

‘ e | {} google-services.json
- / = proguard-rules.pro
v [aradle

google-services.json

e Insert the google-services plugin in the project-level Gradle file

1. To make the google-services. json config values accessible to Firebase SDKs, you need the Google
services Gradle plugin.

@ Kotlin DSL (build.gradle.kts) O Groovy (build.gradle)

Add the plugin as a dependency to your project-level build.gradle . kts file:
Root-level (project-level) Gradle file (<project>/build.gradle.kts):

plugins {
//

// Add the dependency for the Google services Gradle plugin
id("com.google.gms.google-services") version "4.4.3" apply false 10
b

Insert the google-services plugin and firebase dependencies to the
app-level Gradle file

2. Then, in your module (app-level) build.gradle.kts file, add both the google-services plugin and
any Firebase SDKs that you want to use in your app:

Module (app-level) Gradle file (<project>/<app-module>/build.gradle.kts):

plugins {
id("co 0id. af Zalls
// Add the Google services Gradle plugin
id("com.google google-services")

dependencies {
// Import the Firebase BoM
implementation(platform("« joogle.firebase:firebase-bom:34.:)) |0
// TODO: Add the dependencies for Firebase products you want to use

// When using the BoM, don't specify versions in Firebase dependencies

/

// https://firebase.google.com/docs/android/setup#available-libraries

Add Firebase to the Application (summarized)

AW

After downloading the google-service.json, move the file to the ListyCity/app/ folder in
your Android Studios

On Android Studios, open build.gradle.kts (project: ListyCity) and add
id("com.google.gms.google-services") version "4.4.3" apply false inside the plugin
Open build.gradle.kts (Module:app)

Add id("com.google.gms.google-services") inside plugins

Inside dependencies, add these 2 implementations:

implementation(platform("“com.google.firebase:firebase-bom:34.3.0"))
implementation("com.google.firebase:firebase-firestore")

Sync

Create a Firestore Database

1. On the left, under “Product Categories”, Choose “Build -> Firestore
Database”

Click “Create Database”

Select everything as given (Id and location)

Choose “Start in test mode”

You should see an empty database

s W

10

Create a Firestore Database

Build

App Check

App Hosting
Authentication
Data Connect
Extensions
Firestore Database
Functions

Hosting

Machine Learning
Realtime Database

Storage

Create a database

e Select edition

@ Database ID & location

e Configure

After you define your data structure, you will need to write rules to secure your data. Learn more [}

O

Start in production mode

Your data is private by default
Client read/write access will only
be granted as specified by your
security rules

Start in test mode

Your data is open by default to
enable quick setup. However, you
must update your security rules
within 30 days to enable long-

term client read/write access

allow read, write: if
request.time < timestamp.date(2025, 11, 2);

The default security rules for test mode allow anyone with
your database reference to view, edit and delete all data in
your database for the next 30 days

G_I & More in Google Cloud v

A (default)

-

+ Start collection

Your database is ready to go. Just add data

Use Firestore Database in MainActivity

e Remove the hard-coded data in the list (Remove the call to the

addCitiesInit method in onCreate method of MainActivity).

e Add Fire

ite FirebaseFirestore

red void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);

ib = FirebaseFirestore.getInstance() ;|

13

Adding Collection Reference

« Get a collection reference, in this lab, we store all data in a collection
called “cities”.

vate FirebaseFirestore db;
te CollectionReference

@0verride

Create(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

b = FirebaseFirestore.getInstance();
Ref = db.collection(

14

Adding Snapshot Listener to the Collection

FirebaseFirestore.getInstance();
Ref = db.collection(ities");

itiesRef.addSnapshotListener((value,
if (error != null){
Log.e(Firesto , error.toString());
}
if (valve != null &% !value.isEmpty()){
cityArraylList.clear();
for (QueryDocumentSnapshot snapshot : value){
String name = snapshot.getString(
String province = snapshot.getString(

rrayList.add(new City(name, province));

iyAdapter.notifyDataSetChanged();

error) -> {

Modifying the AddCity method

(City city)d{
.add(city);

r.notifyDataSetChanged();

DocumentReference docRef =
docRef.set(city);

sRef.document(city.getName());

16

Optional: Logging

. Optionally, you can add listeners for logging while saving a city. You can
find more listeners in the APl references (link)

citiesRef
.document (city.getCityName ())
.set (data)
.addOnSuccessListener (new OnSuccessListener<vVoid> () {
@Override
public void onSuccess (Void aVoid) {
Log.d("Firestore", "DocumentSnapshot successfully written!");
}
}) g

17

https://developers.google.com/android/reference/com/google/android/gms/tasks/Task.html

Run The Ap

10280 O © *an
@ > cities > Edmonton &

Edmonton Alberta
X cities H B Edmonton

& More in Google Cloud Vv

A (default)
+ Start collection + Add document + Start collection
+ Add field

cities Edmonton
Province: "Alberta"

Lab 5 Participation Exercise

Task: In this exercise it is your task to add the ability to delete Cities and integrate this
functionality with the Firestore database, allowing for the persistence of deletions.

e After applying the changes in the lab demo
e Add the ability to delete cities from the ListView and apply these same deletions to your
instance of the Firestore database. If you have implemented this functionality correctly,

restarting your app should not have an impact on what cities are displayed in your ListView
after any addition or deletion actions.

19

