
CMPUT 301 Lab 8
Test Driven Development 

and 
Continuous Integration 

With Github Action



Traditionally…

We Implement (according to the requirements)

We write tests for it

Problems:

- Miss early problems that could’ve been caught
- No time left to write test (So no idea if the code is even working)
- More expensive to refactor code if a problem was caught



Test Driven Development (TDD)

- Doing things in reverse
- Think about a test. Usually based on the requirements
- Write the test
- Implement the code
- In the simplest way possible so that the test passes
- Refactor the code:

- Very often, we are focused on making the test pass instead of applying best practices
- Do so after the test is green
- Low level refactor: rename variables, extract common function into methods
- High level refactor: change class design, change design pattern



Image source: https://www.spiceworks.com/tech/devops/articles/what-is-tdd/



TDD Pros and Cons

Pros:

- Minimize useless code, as each code has requirements attached to it (In the 
form of unit test)

- Clear focus: making the test pass. Giving us clear indication on how to 
approach the problem.

- Ensure close adherence to requirements.
- No need to worry about testing afterwards, and no untested code.
- Codes are testable and can be validated.
- Faster feedback in development cycle. Code is tested immediately after it is 

pushed.



TDD Pros and Cons

Cons:

- Easy to mismanage time spent. Too much time spent on writing test instead of 
implementing the code (The important bit)

- Slow. Not very flexible with changing requirements.
- Not always possible on:

- Large complex code base
- Legacy system
- Certain library or frameworks



Common TDD pitfalls

As a developer:

- Writing too many tests at once
- Writing tests that are too large
- Writing tests that are too trivial
- Writing tests for trivial code

As a team:

- Inconsistent use of TDD
- Under maintenance of test suites



TDD Summary

- Write a failing test first, make it pass in the simplest way, refactor
- Having tests with good coverage is more important than TDD
- Not a “silver bullet”. Apply it wisely.
- Listen to your test

- Too many test: Possibly low cohesion?
- Too many mocks: Possible high coupling?
- Complex setup: Too complicated to use?

- Not a replacement for code review



Continuous Integration

- A process where the software is automatically build, test and analyzed in 
response to every software changes in the source repository

- Making sure the main branch is always production ready
- Making it a lot easier to find and remove bugs, as we can know immediately if 

the build is broken



Github Action

- One of the many tools for Continuous Integration
- Other options includes:

- Travis CI
- ansible
- Puppet

- Why Github Action:
- Already integrated into Github
- Widely used in industry
- Free



Github Action Workflow

- A way of configuration management.
- Scripts to specify system configuration (packages, OS, versions)
- This concept is not unique to GH Action
- Should be put under version control (Git in our case)
- It is in YAML format for GH Action

Documentation

https://docs.github.com/en/actions/learn-github-actions/understanding-github-actions


TDD + CI

- Ensures TDD is enforced, and ensures tests in CI have good coverage
- Automate testing process and feedback



Want more details?
Take CMPUT 402
Now for lab demo


