
1. Follow the lab lecture about JavaDoc and unit tests then continue from step 2.

2. Download the ListyCity code from the following link if you don’t have it with you. Git clone
the repo below using the git commands you learned during Lab 4.
https://github.com/Jakaria08/CMPUT-301-CustomList

3. Create a new class CityList under ​com.example.simpleparadox.listycity
We will write JavaDoc comments for this class and also test this class by writing unit
tests.
 /**
 * This is a class that keeps track of a list of city objects
 */
public class ​CityList {
 }

4. Declare a list to hold the city objects.
private ​List<City> ​cities ​= ​new ​ArrayList<>()​;

5. Implement a method to add city objects to this list. If a city already exists then throw
Exception. Here we also have written JavaDoc comments with ​@param​ tag.
/**
* This adds a city to the list if the city does not exist
* ​@param ​city
* This is a candidate city to add
*/
public void ​add​(City city) {
 ​if ​(​cities​.contains(city)) {
 ​throw new ​IllegalArgumentException()​;
 ​}
 ​cities​.add(city)​;
 }

6. Create another method to get a list of city objects sorted according to the city name.
Here we also have written JavaDoc comments with ​@return​ tag.
/**
* This returns a sorted list of cities
* ​@return
* Return the sorted list
*/
public ​List<City> ​getCities​() {
 List<City> list = ​cities​;
 ​Collections.​sort​(list)​;
 return ​list​;

https://github.com/Jakaria08/CMPUT-301-CustomList

 }

7. In the ​CityList​ class the ​Collections.​sort​(list)​;​ line shows an error. We want to sort the
name of the cities but we are trying to sort the city objects. To sort an Object by its
property, we have to make the Object ​implement​ the ​Comparable​ interface and
override​ the ​compareTo()​ method. ​Lists​ (and arrays) of objects that implement
Comparable​ interface can be sorted automatically by ​Collections.sort()​. We also need
to implement the method ​compareTo()​. All wrapper classes and ​String​ class implement
Comparable​ interface. ​Wrapper​ classes are compared by their values, and strings are
compared lexicographically. To know more:
https://howtodoinjava.com/java/collections/java-comparable-interface/

8. Go to the City class and make sure it looks like the following with ​Comparable<city>
interface and ​compareTo()​ ​method implementation:
package ​com.example.simpleparadox.listycity​;

public class ​City ​implements ​Comparable<City> {
 ​private ​String ​city​;
 private ​String ​province​;

 ​City​(String city​, ​String province){
 ​this​.​city ​= city​;
 this​.​province ​= province​;
 ​}

 String ​getCityName​(){
 ​return this​.​city​;
 ​}

 String ​getProvinceName​(){
 ​return this​.​province​;
 ​}

 ​@Override
 ​public int ​compareTo​(City city) {
 ​return this​.​city​.compareTo(city.getCityName())​;
 ​}
}

9. Now the error disappears and you can sort the city objects according to the city names.
If two cities are equal then ​compareTo()​ method returns 0.

10. Finally, the CityList class:

https://howtodoinjava.com/java/collections/java-comparable-interface/

package ​com.example.simpleparadox.listycity​;

import ​java.util.ArrayList​;
import ​java.util.Collections​;
import ​java.util.List​;

/**
* This is a class that keeps track of a list of city objects
*/
public class ​CityList {
 ​private ​List<City> ​cities ​= ​new ​ArrayList<>()​;

 ​/**
 * This adds a city to the list if the city does not exist
 * ​@param ​city
 ​* This is a candidate city to add
 */
 ​public void ​add​(City city) {
 ​if ​(​cities​.contains(city)) {
 ​throw new ​IllegalArgumentException()​;
 ​}
 ​cities​.add(city)​;
 ​}

 ​/**
 * This returns a sorted list of cities
 * ​@return
 ​* Return the sorted list
 */
 ​public ​List<City> ​getCities​() {
 List<City> list = ​cities​;
 ​Collections.​sort​(list)​;
 return ​list​;
 ​}

}

11. Select ​Tools -> Generate​ JavaDoc to create HTML java documentation from your
JavaDoc comments. Select the ​“Module app”​ and select the ​output directory​.

12. We will use junit 5 for this lab. By default junit 4 is included. To use junit 5, Include
testImplementation ​'org.junit.jupiter:junit-jupiter-api:5.0.1'
testRuntimeOnly ​'org.junit.jupiter:junit-jupiter-engine:5.0.1'

under ​dependencies​ on app Gradle (​build.gradle(Module:app)​) file and sync it.
From official docs:

Junit-jupiter-api

JUnit Jupiter API for writing tests and extensions.

Junit-jupiter-engine

JUnit Jupiter test engine implementation, only required at runtime.

13. Under ​com.example.simpleparadox.listycity(test) ​folder, create a new class
CityListTest​ to test the functionalities of our ​CityList​ class.

14. Create two private methods for creating a mock city object and adding to the cityList.

package ​com.example.simpleparadox.listycity​;

import ​org.junit.jupiter.api.​Test​;

import static ​org.junit.jupiter.api.Assertions.*​;

class ​CityListTest {

 ​private ​CityList ​mockCityList​() {
 CityList cityList = ​new ​CityList()​;
 ​cityList.add(mockCity())​;
 return ​cityList​;
 ​}

 ​private ​City ​mockCity​() {
 ​return new ​City(​"Edmonton"​, ​"Alberta"​)​;
 ​}
}

15. Write a test for the add() method which is in CityList class. Write it under the ​mockCity()
method. Add city objects using ​add() ​method and check if the addition is successful by
assertEquals()​ and ​assertTrue()​. We need to add ​@Test ​before any test method to
identify it as a junit test.
@Test
void ​testAdd​() {
 CityList cityList = mockCityList()​;

 ​assertEquals​(​1​, ​cityList.getCities().size())​;

 ​City city = ​new ​City(​"Regina"​, ​"Saskatchewan"​)​;
 ​cityList.add(city)​;

 ​assertEquals​(​2​, ​cityList.getCities().size())​;
 ​assertTrue​(cityList.getCities().contains(city))​;
}

16. Write another test method for Exception while adding a city that already exists in the list.
@Test
void ​testAddException​() {
 CityList cityList = mockCityList()​;

 ​City city = ​new ​City(​"Yellowknife"​, ​"Northwest Territories"​)​;
 ​cityList.add(city)​;

 ​assertThrows​(IllegalArgumentException.​class, ​() -> {
 ​cityList​.add(​city​)​;
 ​})​;
}

17. If you get an error like “​Lambda expressions not supported at this language level​” Then
the solution: Change the java language to version 1.8 (Go to ​File​ → ​Project​ ​Structure​)

18. Write another test method to test the ​getCities() ​method in the ​CityList ​class.

@Test
void ​testGetCities​() {
 CityList cityList = mockCityList()​;

 ​assertEquals​(​0​, ​mockCity().compareTo(cityList.getCities().get(​0​)))​;

 ​City city = ​new ​City(​"Charlottetown"​, ​"Prince Edward Island"​)​;
 ​cityList.add(city)​;

 ​assertEquals​(​0​, ​city.compareTo(cityList.getCities().get(​0​)))​;
 ​assertEquals​(​0​, ​mockCity().compareTo(cityList.getCities().get(​1​)))​;
}

19. Run the tests (right-click on the test folder) and see the test output as following:

20. The tests can be written before the real implementation of the ​CityList​ class. We can
implement all the tests first and they must fail as there is no implementation of ​CityList
class and its methods. Then we can give implementation of the class and methods. Then
our tests would pass. This is called test-driven development. You can also follow this
method.

21. Complete ​CityListTest​ class:

