
1. Follow the lab lecture about JavaDoc and unit tests then continue from step 2.

2. Download the ListyCity code from the following link if you don’t have it with you. Git clone
the repo below using the git commands you learned during Lab 4.
https://github.com/Jakaria08/CMPUT-301-CustomList

3. Create a new class CityList under com.example.simpleparadox.listycity
We will write JavaDoc comments for this class and also test this class by writing unit
tests.
 /**
 * This is a class that keeps track of a list of city objects
 */
public class CityList {
 }

4. Declare a list to hold the city objects.
private List<City> cities = new ArrayList<>();

5. Implement a method to add city objects to this list. If a city already exists then throw
Exception. Here we also have written JavaDoc comments with @param tag.
/**
* This adds a city to the list if the city does not exist
* @param city
* This is a candidate city to add
*/
public void add(City city) {
 if (cities.contains(city)) {
 throw new IllegalArgumentException();
 }
 cities.add(city);
 }

6. Create another method to get a list of city objects sorted according to the city name.
Here we also have written JavaDoc comments with @return tag.
/**
* This returns a sorted list of cities
* @return
* Return the sorted list
*/
public List<City> getCities() {
 List<City> list = cities;
 Collections.sort(list);
 return list;

https://github.com/Jakaria08/CMPUT-301-CustomList

 }

7. In the CityList class the Collections.sort(list); line shows an error. We want to sort the
name of the cities but we are trying to sort the city objects. To sort an Object by its
property, we have to make the Object implement the Comparable interface and
override the compareTo() method. Lists (and arrays) of objects that implement
Comparable interface can be sorted automatically by Collections.sort(). We also need
to implement the method compareTo(). All wrapper classes and String class implement
Comparable interface. Wrapper classes are compared by their values, and strings are
compared lexicographically. To know more:
https://howtodoinjava.com/java/collections/java-comparable-interface/

8. Go to the City class and make sure it looks like the following with Comparable<city>
interface and compareTo() method implementation:
package com.example.simpleparadox.listycity;

public class City implements Comparable<City> {
 private String city;
 private String province;

 City(String city, String province){
 this.city = city;
 this.province = province;
 }

 String getCityName(){
 return this.city;
 }

 String getProvinceName(){
 return this.province;
 }

 @Override
 public int compareTo(City city) {
 return this.city.compareTo(city.getCityName());
 }
}

9. Now the error disappears and you can sort the city objects according to the city names.
If two cities are equal then compareTo() method returns 0.

10. Finally, the CityList class:

https://howtodoinjava.com/java/collections/java-comparable-interface/

package com.example.simpleparadox.listycity;

import java.util.ArrayList;
import java.util.Collections;
import java.util.List;

/**
* This is a class that keeps track of a list of city objects
*/
public class CityList {
 private List<City> cities = new ArrayList<>();

 /**
 * This adds a city to the list if the city does not exist
 * @param city
 * This is a candidate city to add
 */
 public void add(City city) {
 if (cities.contains(city)) {
 throw new IllegalArgumentException();
 }
 cities.add(city);
 }

 /**
 * This returns a sorted list of cities
 * @return
 * Return the sorted list
 */
 public List<City> getCities() {
 List<City> list = cities;
 Collections.sort(list);
 return list;
 }

}

11. Select Tools -> Generate JavaDoc to create HTML java documentation from your
JavaDoc comments. Select the “Module app” and select the output directory.

12. We will use junit 5 for this lab. By default junit 4 is included. To use junit 5, Include
testImplementation 'org.junit.jupiter:junit-jupiter-api:5.0.1'
testRuntimeOnly 'org.junit.jupiter:junit-jupiter-engine:5.0.1'

under dependencies on app Gradle (build.gradle(Module:app)) file and sync it.
From official docs:

Junit-jupiter-api

JUnit Jupiter API for writing tests and extensions.

Junit-jupiter-engine

JUnit Jupiter test engine implementation, only required at runtime.

13. Under com.example.simpleparadox.listycity(test) folder, create a new class
CityListTest to test the functionalities of our CityList class.

14. Create two private methods for creating a mock city object and adding to the cityList.

package com.example.simpleparadox.listycity;

import org.junit.jupiter.api.Test;

import static org.junit.jupiter.api.Assertions.*;

class CityListTest {

 private CityList mockCityList() {
 CityList cityList = new CityList();
 cityList.add(mockCity());
 return cityList;
 }

 private City mockCity() {
 return new City("Edmonton", "Alberta");
 }
}

15. Write a test for the add() method which is in CityList class. Write it under the mockCity()
method. Add city objects using add() method and check if the addition is successful by
assertEquals() and assertTrue(). We need to add @Test before any test method to
identify it as a junit test.
@Test
void testAdd() {
 CityList cityList = mockCityList();

 assertEquals(1, cityList.getCities().size());

 City city = new City("Regina", "Saskatchewan");
 cityList.add(city);

 assertEquals(2, cityList.getCities().size());
 assertTrue(cityList.getCities().contains(city));
}

16. Write another test method for Exception while adding a city that already exists in the list.
@Test
void testAddException() {
 CityList cityList = mockCityList();

 City city = new City("Yellowknife", "Northwest Territories");
 cityList.add(city);

 assertThrows(IllegalArgumentException.class, () -> {
 cityList.add(city);
 });
}

17. If you get an error like “Lambda expressions not supported at this language level” Then
the solution: Change the java language to version 1.8 (Go to File → Project Structure)

18. Write another test method to test the getCities() method in the CityList class.

@Test
void testGetCities() {
 CityList cityList = mockCityList();

 assertEquals(0, mockCity().compareTo(cityList.getCities().get(0)));

 City city = new City("Charlottetown", "Prince Edward Island");
 cityList.add(city);

 assertEquals(0, city.compareTo(cityList.getCities().get(0)));
 assertEquals(0, mockCity().compareTo(cityList.getCities().get(1)));
}

19. Run the tests (right-click on the test folder) and see the test output as following:

20. The tests can be written before the real implementation of the CityList class. We can
implement all the tests first and they must fail as there is no implementation of CityList
class and its methods. Then we can give implementation of the class and methods. Then
our tests would pass. This is called test-driven development. You can also follow this
method.

21. Complete CityListTest class:

