
CMPUT 301 2015 Winter Term Final Exam
TEST VERSION: Magnetite

by Abram Hindle (c) 2014
hindle1@ualberta.ca

Name:

CCID:

Student Number:
Question Mark Out of

Object Oriented Analysis:
Potential Classes and Methods

2

UML: Association, Aggregation,
Composition?

2

UML Sequence Diagrams 2

Software Processes 3

Human Error and User Interfaces 2

Design Patterns 3

OO Principles 2

State Diagram 3

MVC and Observer Pattern 3

Testing 3

Factory Method
and Refactoring

3

Testing 2

TOTAL 30

mailto:hindle1@ualberta.ca

CMPUT 301 Winter 2015 Final

Name:

CCID:

Object Oriented Analysis: Potential Classes and Methods [2 marks]

Read the following paragraph and draw a UML class diagram of this scenario. This is about the
domain, the requirements, not the final design. Label relationships. Highlight the nouns that become
classes with squares, and the verbs and relationships with circles. Provide the basic abstractions,
attributes, methods, relationships, multiplicities, and navigabilities as appropriate.

I am in charge of political campaign yard signs for a candidate
running in the next provincial election. I need to record voter
addresses of voters who want to host one of our campaign yard
signs on their lawn or in their window. Then I need to get our sign
delivery team to deliver a sign. After the election I will have to send
out the delivery team to retrieve every lawn sign, and I'll have to
phone everyone who has a window sign. I need a system to help
automate recording voter addresses and keep track of where the
signs are. The delivery team needs maps for distributing signs and
will need a map and routes to take for picking up lawn signs.

CMPUT 301 Winter 2015 Final

Name:

CCID:

UML: Association, Aggregation, Composition? [2 marks]

Convert this Java code to a UML class diagram. This Java code is meant to represent a video game.
Draw a well-designed UML class diagram to represent this information. Provide the basic
abstractions, attributes, methods, relationships, multiplicities, and navigabilities as appropriate.

public interface StateCostume {
 public void jump(Player player);
 public void run(Player player);
}
class JumpSuit implements
StateCostume {...}
class FastSuit implements
StateCostume {...}
class SlowSuit implements
StateCostume {...}
public interface Player {
 public void jump();
 public void run();
}

public class Human implements Player
{
 Weapon [2] weapons;
 StateCostume costume;
 public void jump() { ... }
 public void run() { ... }
}
public class NPC extends Human
{ ... }
public interface Weapon {
 public void fire();
}
class Sword implements Weapon { ... }
class Rifle implements Weapon { ... }

CMPUT 301 Winter 2015 Final

Name:

CCID:

UML Sequence Diagrams: [2 marks]

Convert this use case sequence of steps into a sequence diagram, remember to include all the actors,
the roles, the components, the lifelines, and activations! and use good names for the methods.

Use Case Sequence: Escrow (buying an item online using a middle-man (escrow) for security)

1. I find an item that I want to buy
2. I place an offer on the item
3. Seller accepts the offer
4. I place a payment in escrow (3rd party)
5. Seller ships the item to escrow (3rd party)
6. Escrow inspects the item and the payment, if acceptable Escrow ships

the item to me
7. I receive the item and confirm receipt to escrow.
8. Seller receives payment from escrow.

CMPUT 301 Winter 2015 Final

Name:

CCID:

Software Processes: [3 marks]

[1 mark] How do agile software processes provide feedback to stakeholders?

[1 mark] How would one use continuous integration in staged delivery
processes?

[1 mark] List 2 tools that promote the concept of courage, from agile
development. Briefly explain why.

CMPUT 301 Winter 2015 Final;

Name:

CCID:

Human Error and User Interfaces: [2 Marks]

the role of the each author.
List everything wrong with this user interface. Draw a better user-interface in
terms of clarity, usability, and graphical design elements.

CMPUT 301 Winter 2015 Final;

Name:

CCID:

Design Paterns: [3 Marks]

Read the following problems, then choose and a)NAME the design pattern
and b)EXPLAIN why this design pattern is the most appropriate solution.

1) You are writing database rows to disk. Depending on the database some
columns have private information and need to encrypted. Some columns
contain a lot of text and should be compressed. For some columns, both
operations need to occur.

2) You are writing a game where you run over your enemies and they become
a part of you. When you press the fire button all of the enemies that are part
of you shoot in all directions.

3) You are writing a instant messaging chat client. You want the user to load
3rd party plugins that can respond to certain requests such as “where are you”
or “send me your itinerary” automatically.

CMPUT 301 Winter 2015 Final;

Name:

CCID:

OO Principles: [2 marks]

[1 Mark] How are cohesion and coupling affected by the advice:
Depend upon abstractions. Do not depend on concrete classes

[1 Mark] Given the advice, “Favor composing objects (delegation) over
implementation inheritance,” explain how cohesion and coupling are
affected.

CMPUT 301 Winter 2015 Final;

Name:

CCID:

State Dragram: [3 marks]

Your job is to make a UML state diagram that models this simple printer described
below. Also in the UML state diagram be sure to show the transition between these
states.

The toxic receipt printer starts up when the power button is pressed. It then goes into
startup mode. It determines if it has paper or not. If it doesn't have paper it goes into out
of paper mode and has to be turned off to allow someone to service the printer to replace
the roll of toxic paper. If the printer has toxic paper it will start to accept jobs. The
printer can accept jobs at anytime after startup if it isn't out of toxic paper, even while it
is printing. If the printer has 1 or more jobs it will grab the first job and print that job,
removing it from the queue. Upon finishing printing the printer will determine if there is
any toxic paper left. If no paper is available the printer will go to out of paper mode,
otherwise it will return to servicing the job queue. If the printer has no jobs it will just sit
idle until it has a job it can print.

CMPUT 301 Winter 2015 Final;

Name:

CCID:

MVC and Observer Pattern: [3 Marks]

[1 Mark] How does the observer pattern decouple a model from views? Do not define
model, do not define view. Tell me HOW this pattern works and why it DECOUPLES.

[2 Mark] Draw the UML Sequence Diagram for the observer pattern when the model
has been changed. In your sequence diagram show how an abstract model instance
updates all listeners.

CMPUT 301 Winter 2015 Final;

Name:

CCID:

Testing: [3 Marks]

Write test-cases using jUnit style unit tests for a routine that determines if two circles
intersect. Keep the number of redundant tests low but test each equivilence class.

class Circle {
 private double x;
 private double y;
 private double radius;
 public Circle(double radius, double x, double y) { ... }
 public boolean intersect(Circle c) { ... }
}

CMPUT 301 Winter 2015 Final;

Name:

CCID:

Factory Method Refactoring: [3 Marks]

CrossPlatformOK displays an OK Button dialogue using native widgets for Win32 and
OSX, we're going to add a QT version for Linux. Before we can do this we need to
apply two refactorings for CrossPlatformOK to enable the Factory Method pattern.
1. Provide ONLY the source code of the new show() method in CrossPlatformOK.
2. Provide the UML class diagram and of CrossPlatformOK and related classes after
the refactoring.

class CrossPlatformOK {
static int WIN32 = 1;
static int OSX = 2;
String message;
int platform;
CrossPlatformOK(String message, int platform) {

this.message = message;
}
void show() {

if (platform == WIN32) {
Widget button = new Win32Button(“OK”);
Widget label = new Win32Label(message);
Window window = new Win32DialogueWindow();

} else {
Widget button = new OSXButton(“OK”);
Widget label = new OSXLabel(message);
Window window = new OSXDialogueWindow();

}
window.add(label);
window.add(button);
window.show();

}
}

CMPUT 301 Winter 2015 Final;

Name:

CCID:

Testing: [2 Marks] We have a task executor that will retry tasks that are interupted.
Write the code for a mock object class (MockTask) that will allow testing of line 11 of
Processor in testTooManyRetries of TestProcessor. Write the code for MockTask.

public interface Task { public void execute(); }
class Processor {
 void process(Collection<Task> tasks) {
 for (Task task: tasks) {
 try {
 task.execute();
 } catch(InterruptedException e) {
 try { // retry it!
 task.execute();
 } catch (InterruptedException e) {
11: throw new UnfinishedTaskException(task);
 }
 }
 }

 }
}
class TestProcessor extends TestCase {

void testTooManyRetries() {
 Processor p = new Processor();
 Task t = new MockTask();
 try {
 p.process(new ArrayList<Task>(new Task[]{t}));
 assert(false, “This was supposed to fail”);
 } catch (UnfinishedTaskException e) {

 assert(e.task == task,”Our task is not the same?”);
 }
 }
}

