
CMPUT 301 2018 Fall Term Final Exam
TEST VERSION: Zubat

by Abram Hindle (c) 2015-2018
hindle1@ualberta.ca

Name:

CCID:

Student Number:

Question Mark Out of

Object Oriented Analysis:
Potential Classes and Methods

3

UML: Association, Aggregation,
Composition?

3

Template Method Pattern 3

UML Sequence Diagrams 3

Decorator Pattern 3

Mock Objects 3

Behavioural Patterns 3

GrabBag 3

Testing 3

Refactoring 3

TOTAL 30

mailto:hindle1@ualberta.ca

CMPUT 301 Fall 2018 Final;

Name:

CCID:

Object Oriented Analysis: Potential Classes and Methods [3 marks]

Read the following paragraph and draw a UML class diagram of this scenario. This is about the
domain, the requirements, not the final design. Label relationships. Highlight the nouns that become
classes with squares, and the verbs and relationships with circles. Provide the basic abstractions,
attributes, methods, relationships, multiplicities, and navigabilities as appropriate.

I like to eat cheese. I want to record my cheese eating. I want to record the
amount and types of cheese that I ate, and when I ate them, and my reviews
of the cheese. Furthermore I want to see the timeline of the cheeses eaten
throughout the session. I often live-stream my cheese eating on Twitch, a
video streaming platform, where I give reviews of cheeses and my viewers
give me donations. I need these reviews and donations added to a timeline of
events so that I can analyse the timeline so I can optimize my cheese eating
strategies to maximize my twitch revenue.

CMPUT 301 Fall 2018 Final;

Name:

CCID:

UML: Association, Aggregation, Composition? [3 marks]

Convert this Java code to a UML class diagram. Draw a well-designed UML class diagram to
represent this information. Provide the basic abstractions, attributes, methods, relationships,
multiplicities, and navigabilities as appropriate.

interface Keyboard {
 public void clickClack();
}
class OnScreenKeyB implements Keyboard {
 Screen s;
 public void clickClack() { ... }
 ...
}
public interface Screen {
 public void display(UI ui);
}
class OLEDScreen {
 public void display(UI ui) { ... }
 ...
}

public class Phone {
 Keyboard ky;
 Screen s;
 ...
}
class DiPhone extends Phone {
 DiPhone(Keyboard k, Screen s) { ... }
}
class MyPhone extends Phone {
 MyPhone() {
 ky = new OnScreenKeyB();
 s = new OLEDScreen();
 }
 ...
}

CMPUT 301 Fall 2018 Final;

Name:

CCID:

Template Method Pattern: [3 marks]

Refactor those conditionals (hasSlicer, logOps) away using polymorphism. Modify this code to use the
template method pattern. Only show new or changed or moved code. Show the resulting UML class
diagram, be sure to include a “CandyRopeMaker with Slicer” subclass.

class CandyRopeMaker {
 boolean hasSlicer = false;
 boolean logOps = false;
 CandyRopeMaker(boolean sliceit, boolean logit) {
 hasSlicer = sliceit;
 logOps = logit;
 }
 CandyRope processCandyRope() {
 if (logOps} { logger.log(“Start Process Candy Rope”); }
 for (int i = 0 ; i < 10; i++) {
 emitCandy();
 }
 if (hasSlicer) { cutRope(); }
 if (logOps} { logger.log(“Finish Process Candy Rope”); }
 }
 void emitCandy() { ... }
 void cutRope() { ... }
}

CMPUT 301 Fall 2018 Final;

Name:

CCID:

UML Sequence Diagrams: [3 marks]

Convert this parking scenario into a UML sequence diagram, remember to include all the actors, the
roles, the components, the lifelines, and activations! and use good names for the methods.

I park my car. I look at the parking spot label, it says #A15. I go to the parking payment kiosk. I
see a map of parking spots and I see my spot, #A15. I click on my spot #A15 and then the
machine asks for my credit card. I insert my credit card and remove it. The machine tells me to
insert my credit card upon return. I go out shopping and I come back with a wide assortment of
cheeses. I swipe my credit card at the parking payment kiosk. It prints a receipt showing how
much I was charged for parking. $3.92? What a rip-off!

CMPUT 301 Fall 2018 Final;

Name:

CCID:

Decorator Pattern: [3 Marks]

1. Code a decorator that can lowercase generateWord() of RandomWordGenerator.
The .toLowerCase() method on strings returns a lowercase version of a string,
for example “A”.toLowerCase().equals(“a”) evaluates to true.

public interface WordGenerator {
public String generateWord();

}
public class RandomWordGenerator implements WordGenerator {

static final char letters[] = “abcdefgh...zABC..Z”.toCharArray();
public String generateWord() {

char[] c = new char[8];
for (int i = 0; i < 8; i++) {

c[i] = letters[(int)(Math.random() * letters.length)];
}
return new String(c);

}
}

2. Decorate the instance of RandomWordGenerator (wg) so that the following code print lowercase
words:
WordGenerator wg = new RandomWordGenerator();
// decorate the instance below

for (int i = 0; i < 100; i++) {
System.out.println(wg.generateWord());

}

CMPUT 301 Fall 2018 Final;

Name:

CCID:

Mock Objects: [3 Marks]

Write the code for a mock object to help reach and test the bolded code block marked “REACH THIS
CODE” so that the testcase testBadResponse() in ErrorResponderTest will pass.

interface HTTPRequest {
 public int getCode();
 public String getContent();
}
class ErrorResponder {
 Exception exceptionForCode(HTTPRequest h) {
 int code = h.getCode();
 if (code >= 300 && code < 400) {
 return new RedirectException();
 } else if (code >= 400 && code < 500) {
 return new BadRequestException();
 } else if (code >= 500 && code < 600) {
 doSomeFiveHundredMagic(); // REACH THIS
 return new BadResponseException(); // CODE
 }
 }
 ...
}
class ErrorResponderTest extends TestCase {
 void testBadResponse() {
 HTTPRequest errorRequest = // finish this line
 ErrorResponder e = new ErrorResponder();
 assertEquals(new BadResponseException(),
 e.exceptionForCode(errorRequest));
 }
}

CMPUT 301 Fall 2018 Final;

Name:

CCID:

Behavioural Patterns: [3 Marks]

Your unimaginative boss is making you
code a videogame like Super Mario:
Alright Alan. In the game, Alright Alan
explores an office environment, Alright
Alan has 3 tries (lives) to navigate the office to get home. Alan starts as Small Alan. If an enemy, a co-
worker or his boss, manages to grab Alright Alan, Alright Alan will be forced to stay late and will
lose a try (Caught Alan). But Alan can collect powerups which help him avoid work!

• If Alright Alan collects a TPS-report he is invicible for 10 seconds and cannot be grabbed by
an enemy. After 10 seconds, Alan will return to his previous state. (Invincible Alan)

• If Alright Alan collects a coffee, he grows twice as tall, and if an enemy grabs him, he will
revert back to his original short size, but will not lose a try! (Caffeinated Alan)

• If Alright Alan collects a stapler, Alan grows twice as tall AND he can fire staples at his
coworkers, temporarily disabling them. If an enemy catches Alright Alan with a stapler,
Alright Alan loses the stapler, and shrinks back to original size but will not lose a try. (Stapler
Alan)

1. What design pattern is appropriate for modelling Alright Alan’s change of behaviour?

2. Draw the UML class diagram of a Alright Alan and Alright Alan’s behaviour using
the appropriate design pattern. Required methods are run, jump, collideWithEnemy,
fireStapler.

CMPUT 301 Fall 2018 Final;

Name:

CCID:

GrabBag: [3 Marks]

1. How is the cohesion of an existing object affected when we make it a model object in MVC where
the object takes the role of observable in the observer pattern?

2. Abram made a silly mistake and committed the file osxfilenamecorrection.java to the repo. It’s
supposed to be called OSXFileNameCorrection.java as it contains the class OSXFileNameCorrection.
Using the git command line, how do you fix Abram’s error that exists on the “origin” repo on the
“master” branch? Using git, correct the filename and share the correction back to origin’s master
branch. Assume you have checked out the HEAD of master which contains this mistake.

3. In agile software development what is collective code ownership and Explain how collective code
ownership affects who can change what part of the source code of a project.

CMPUT 301 Fall 2018 Final;

Name:

CCID:

Testing: [3 Marks]
Write comprehensive testcases for this OurSet class’s intersect method that models Set Intersection
(the items of each set that are shared between both sets) that cover all equivalence classes for
OurSet.intersect. Use jUnit style.

class OurSet {
 // Empty Set constructor
 OurSet() { … }
 // Constructor from array
 OurSet(Object[] objectsInSet) { … }
 // Returns an OurSet object that contains the intersection of OurSets “this” and “input”.
 OurSet intersect(OurSet input) { ... }
 // Adds an object to the set
 void add(Object o) { ... }
 ...
}

CMPUT 301 Fall 2018 Final;

Name:

CCID:

Refactoring: [3 Marks]
Read the following code:

class LandCollection {
 ArrayList<LandPlot> lands;
 int calculateArea(LandPlot l) {
 return l.width * l.height;
 }
 int totalArea() {
 int total = 0;
 for (Land l: lands) {
 total += calculateArea(l);
 }
 return total;
 }
}

class LandPlot {
 int width;
 int length;
 LandPlot(int width, int length) {
 this.width = width;
 this.length = length;
 }
}

1. Name a code smell that this code suffers from that you will refactor.

2. Name an appropriate refactoring to fix the code smell you named. Then apply that refactoring to the
code, then draw a UML class diagram of the resulting classes.

