
• Object-oriented analysis and design

 (Learning goal: given problem description, draw correct UML class

diagram; apply object-oriented design principles.)

You are designing an application to help manage recorded GPS
(Global Positioning System) data. A location has a latitude and
longitude. A track is a named sequence of up to 10000 locations. A
waypoint is a named location. A trip is a named collection of
possibly track(s), waypoint(s), and other trip(s).

[3] Draw a well-designed UML class diagram to represent these
entities in the data model for the application. Provide the correct
object-oriented abstractions, relationships, attributes, and
multiplicities. State any further assumptions, and highlight their
appearance in the diagram.

 2

• Object-oriented analysis and design

 (Learning goal: from/given UML class diagram, write correct Java code)

[2] Accordingly, write correct skeletal Java code for these entities in the

data model of the application. Include all abstractions,
relationships, attributes, and basic public methods. For example,
named entities should have a public getName method.

 3

• Object-oriented analysis and design

 (Learning goal: given Java code, draw correct UML class diagram.)

[3] Draw the corresponding UML class diagram for the following

skeletal Java code. Provide the correct abstractions, relationships,
attributes, methods, and multiplicities.

class A { class D {
 private int i; public String get() { … }
 public int get() { … } }
}

interface B { public class E extends A implements B {
 public int set(); private ArrayList<C> c;
} private D d1, d2;

class C { public int set() { … }
 public float f; }
 public float get() { … }
}

 4

• Object-oriented analysis and design

 (Learning goal: explain whether inheritance is or is not appropriate.)

[2] Suppose a system event log contains events, with just the need to

append and iterate over events. A potential software design has
corresponding Log and Event classes. A developer decides to have
Log inherit from ArrayList<Event>. Give two different reasons
that clearly explain why this may not be an appropriate software
design decision. (Giving an alternative design by itself is not a
reason.)

 1:

 2:

 5

• Object-oriented analysis and design

 (Learning goal: explain the differences between generalization with

inheritance and interfaces.)

[2] Consider abstract classes and interfaces in Java. Explain clearly in

what situation(s) should abstract classes be used and in what
situations should interfaces be used.

 6

• Object-oriented analysis and design

 (Learning goal: explain coupling and cohesion and their relationship.)

[2] Consider coupling and cohesion for the classes of an object-

oriented application. Explain clearly how and why these concepts
are related. (Defining the terms is not enough.)

 7

• Software process

(Learning goal: explain and relate agile manifesto, agile principles, and
agile practices.)

[2] The Agile Manifesto describes a principle: “Welcome changing

requirements, even late in development.”

From specific Extreme Programming practices, describe two that
help to achieve this principle. Explain clearly how. (Just restating
the principle or defining the practices is not enough.)

[2] The Agile Manifesto states as a principle: “Our highest priority is to
satisfy the customer through early and continuous delivery of
valuable software.” From specific Scrum practices, describe two
that help to achieve this principle. Explain clearly how. (Just
restating the principle or defining the practices is not enough.)

 8

• Software Process

(Learning goal: explain and give examples of the differences between
incremental and evolutionary prototyping.)

[2] Consider the versions of an operating system that you know. For

that system, give a clear example of incremental prototyping and
evolutionary prototyping. For each example, explain clearly why it
applies a certain type of prototyping. (Do not give examples from
the course.)

incremental:

evolutionary:

 9

• Requirements

(Learning goals: given problem description, determine a relevant user
story; distinguish and give examples of requirement types; for a
requirement, provide acceptance tests.)

[4] For a mobile application to help a claimant note expenses for a

travel expense claim report, give an example user story for a user
requirement and an example user story for a non-functional
requirement. For each user story, also provide two acceptance tests
for the requirement.

 user requirement user story and two acceptance tests:

 non-functional requirement user story and two acceptance tests:

 10

• Requirements

 (Learning goal: given problem description, draw correct UML use case

diagram)

 Consider a task with two required subtasks: pre-authorizing

payment and fueling at a gas pump at a service station. The pre-
authorizing payment subtask has two variations: pre-authorizing
by credit card or pre-authorizing by debit card.

[2] Draw the correct UML use case diagram for the task, subtasks, and

task variations, showing the actor(s), use cases, and relationships.

 11

• Requirements

 (Learning goal: from/given task, write correct use case description.)

[3] Accordingly, write a correct use case description for the fueling

subtask, with the following fields. List the steps of what the actor(s)
do and what the system presents in the basic flow.

 use case name:

 participating actor(s):

 goal:

 trigger:

 precondition:

 postcondition:

 basic flow:

…

 12

• Requirements

 (Learning goal: given behavior description, draw correct UML state

diagram.)

[3] Consider the behavior of a payment machine that accepts only

loonies (one dollar coins) and toonies (two dollar coins), one-at-a-
time. At least three dollars need to be inserted for the machine to
automatically display a confirmation number. The user can also
eject the coins inserted so far, if under three dollars. If over three
dollars were inserted, the extra amount is returned as change.

For this behavior, draw a correct UML state diagram. Include the
relevant states, transitions, triggers, guards, and actions. State any
further assumptions, and highlight where each appears in the
diagram.

